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ABSTRACT Patient outcomes during infection are due to a complex interplay be-
tween the quality of medical care, host immunity factors, and the infecting patho-
gen’s characteristics. To probe the influence of pathogen genotype on human sur-
vival, immune response, and other parameters of disease, we examined Cryptococcus
neoformans isolates collected during the Cryptococcal Optimal Antiretroviral Therapy
(ART) Timing (COAT) Trial in Uganda. We measured human participants’ survival,
meningitis disease parameters, immunologic phenotypes, and pathogen in vitro
growth characteristics. We compared those clinical data to whole-genome sequences
from 38 C. neoformans isolates of the most frequently observed sequence type (ST),
ST93, in our Ugandan participant population and to sequences from an additional
18 strains of 9 other sequence types representing the known genetic diversity within
the Ugandan Cryptococcus clinical isolates. We focused our analyses on 652 polymor-
phisms that were variable among the ST93 genomes, were not in centromeres or
extreme telomeres, and were predicted to have a fitness effect. Logistic regression
and principal component analysis identified 40 candidate Cryptococcus genes and 3
hypothetical RNAs associated with human survival, immunologic response, or clinical
parameters. We infected mice with 17 available KN99� gene deletion strains for
these candidate genes and found that 35% (6/17) directly influenced murine sur-
vival. Four of the six gene deletions that impacted murine survival were novel. Such
bedside-to-bench translational research identifies important candidate genes for fu-
ture studies on virulence-associated traits in human Cryptococcus infections.

IMPORTANCE Even with the best available care, mortality rates in cryptococcal
meningitis range from 20% to 60%. Disease is often due to infection by the fungus
Cryptococcus neoformans and involves a complex interaction between the human
host and the fungal pathogen. Although previous studies have suggested genetic
differences in the pathogen impact human disease, it has proven quite difficult to
identify the specific C. neoformans genes that impact the outcome of the human in-
fection. Here, we take advantage of a Ugandan patient cohort infected with closely
related C. neoformans strains to examine the role of pathogen genetic variants on
several human disease characteristics. Using a pathogen whole-genome sequenc-
ing approach, we showed that 40 C. neoformans genes are associated with hu-
man disease. Surprisingly, many of these genes are specific to Cryptococcus and
have unknown functions. We also show deletion of some of these genes alters
disease in a mouse model of infection, confirming their role in disease. These
findings are particularly important because they are the first to identify C. neo-
formans genes associated with human cryptococcal meningitis and lay the foun-
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dation for future studies that may lead to new treatment strategies aimed at re-
ducing patient mortality.

KEYWORDS fungus, HIV, cryptococcosis, meningitis, GWAS, polymorphism, virulence,
variant, genome analysis, CNS, pathogenesis, SNP, GWAS

Cryptococcus neoformans is the etiological agent of cryptococcal meningitis, the
most common brain infection in sub-Saharan Africa, and is responsible for 15% of

AIDS-related deaths (1). As with all fungal pathogens, a major clinical concern is the
small number of antifungal drug classes available (n � 3) (2, 3). Researchers seek to
identify the pathogen virulence factors that influence human health in order to develop
novel drug targets to improve patient survival (4). In addition to the virulence factors
that are common among all human-pathogenic fungi, such as the ability to grow at
37°C, a number of Cryptococcus-specific virulence factors have been identified. The best
studied include the polysaccharide capsule, the synthesis of melanin, and the secretion
of extracellular enzymes such as phospholipases, laccase, and urease (5). As we have
previously discussed (6), there is not a clear quantitative association between in vitro
virulence factor defects and clinical parameters of disease (7–13); thus, studies clarifying
this relationship are required.

Additional potential virulence targets have been identified through reverse genetic
screens of the C. neoformans gene knockout collection (14). A screen of 1,201 knockout
mutants from 1,180 genes (20% of the protein-coding genes) identified 164 mutants
with reduced infectivity and 33 with increased infectivity in a screen for murine lung
infectivity (7). Desalermos and colleagues (15) screened the same mutants for virulence
in Caenorhabditis elegans and Galleria mellonella infection models and identified 12
mutants through a dual-species stepwise screening approach; all 12 also had attenu-
ated virulence in a murine model (4 overlapped those identified in the original murine
lung screen). Many of the identified genes are associated with melanin production
(which is not required for killing of C. elegans); thus, the emerging picture is that genes
that influence virulence are involved in multiple independent or parallel pathways such
as melanization (15).

A complementary tactic to identify novel virulence factors is to use a forward
genetics approach to look for an association between strain background and virulence.
At a coarse level, there is a clear correlation between Cryptococcus variation and human
infectivity. C. neoformans var. grubii strains cause the majority of infections in immu-
nocompromised patients (16), while C. gattii is strongly implicated in cryptococcosis in
immunocompetent individuals (17). A few studies have demonstrated that there is also
an influence of phylogenetic relatedness on disease within var. grubii strains. PCR/
amplified fragment length polymorphism (AFLP)/multilocus sequence type (MLST)
analyses divided var. grubii strains into three groups, namely, VNI, VNII, and VNB strains
(18). Beale and colleagues (10) found that among strains from South Africa, survival was
lower for eight patients infected with VNB strains than for those infected with the more
common VNI or VNII strains (isolated from 175 and 47 patients, respectively). Similarly,
Wiesner and colleagues (9) used MLST to type 111 strains isolated from Ugandan
patients with their first episode of cryptococcal meningitis and conducted BURST
clustering analysis to group strains with similar sequence types (STs) (all of which were
in the VN1 clade). The members of BURST group 3 had significantly improved survival
(62%) relative to those of BURST groups 1 and 2 (20% for both groups). Yet additional,
finer-resolution studies performed by Mukaremera and colleagues within individual
MLSTs showed that there was also substantial variation in rates of patient survival
associated with individual strain differences (19). Interestingly, while the South African
clinical strains exhibited diversity in STs, the Ugandan clinical strains were closely
related, with ST93 strains accounting for approximately 60% of the isolates (9, 10, 19).

The conclusions that emerge from these studies are 2-fold. Strain background can
significantly influence human disease, and there is tremendous disparity in strain
frequency; some strain groups are much more common than others. ST93 is common
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in Uganda but is also the ST strain most frequently isolated from HIV-infected patients
in Brazil (85% [20, 21]) and India (71% [22, 23]). Sequence type prevalence also has a
clear geographic component, as different ST groups are dominant in other well-
sampled countries (e.g., China, Thailand, Vietnam, Indonesia, Botswana, and France
[22–24]).

Here we sought to identify candidate genes associated with clinical phenotypes in
human subjects. We took advantage of the large number of patients in Uganda infected
with closely related ST93 strains and combined this with a powerful data set collected
during the Cryptococcal Optimal ART Timing (COAT) trial (ClinicalTrials registration no.
NCT01075152) in Uganda (25). When participants enrolled in the trial, strains were
isolated and participant survival and quantitative clinical and immunologic data were
collected prior to treatment (26). We sequenced the whole genomes of 38 ST93 strains,
half from participants that survived the infection and half from participants that died,
reasoning that restricting our search to variants among closely related strains would
reduce background genetic noise. We conducted a series of statistical tests that
identified 40 candidate genes and 3 hypothetical RNAs associated with patient survival
and clinical, immunologic, or in vitro phenotypes. We measured the virulence of 17
available KN99� knockout mutants for these genes in mice and found that 35% (6/17)
had a significant association with mouse survival. Pathogen whole-genome sequencing
paired with statistical analyses of human clinical outcome data and in vivo virulence
tests thus provides a new method to empirically probe the relationship between
pathogen genotype and human clinical phenotype.

RESULTS

Fifty-six C. neoformans VNI strains isolated from HIV-infected, ART-naive patients
presenting with their first episode of cryptococcal meningitis at Mulago Hospital,
Kampala, Uganda, were subjected to whole-genome sequencing. The majority of
strains (n � 38) were chosen from ST93 isolates (the dominant genotype in Uganda [9,
19, 25]), collected as part of the Cryptococcal Optimal ART Timing (COAT) trial, where
an array of human immunologic phenotypes and disease parameters were recorded for
all participants (26). Approximately half of these strains were derived from participants
who survived the infection (n � 21) and half from participants who died (n � 17). The
remaining 18 strains were chosen to represent the diversity of the clinical strains in
Uganda for phylogenetic purposes.

We identified 127,344 single nucleotide polymorphisms (SNPs) and 15,032 inser-
tions/deletions (referred to as indels) associated with 7,561 “genes” (this total includes
predicted genes, hypothetical RNAs, and other genomic features that have associated
CNAG designations on FungiDB) among the 56 sequenced C. neoformans strains. For
ease of reference, we refer to these SNPs, insertions, and deletions cumulatively as
“variants.” Over three-quarters of the identified variants were noncoding variants not
predicted to change the amino acid sequence of a gene: synonymous changes within
the gene (22%), intergenic regions (3%), or regions identified as upstream or down-
stream of the associated gene (within 5 kb of the nearest gene; 43% upstream, 10%
downstream). The remaining (genic) variants are associated with 5,812 different genes.
Nonsynonymous coding changes represent the largest class (90%) of these variants,
with the remainder small insertion and deletion mutations.

The majority of genes have relatively few variants within the strain set, though 435
genes have over 50 variants (Fig. 1A). There was not a significant relationship between
gene length and the number of variants per base pair (Pearson’s correlation test;
t4254 � 1.29, P � 0.20, correlation value [cor] � 0.02) (Fig. 1B), indicating that gene
length is not the sole predictor of the number of variants in each gene. The numbers
of variants in all sequenced genomes were extremely similar among strains of the same
sequence type (t � 1.2868, df � 4254, P � 0.1982), reflective of the phylogenetic
distance from sequenced strains to the H99 reference genome (Fig. 2).

With this phylogenetic strain knowledge, we classified all variants into four catego-
ries: (i) “common” variants differentiating Ugandan clinical isolates from the reference
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H99 genome; (ii) “other” variants present only in non-ST93 genomes; (iii) “allST93”
variants present in all ST93 genomes but in no other Ugandan ST genomes; (iv)
“someST93” variants present in some of the ST93 genomes. For our study, we consid-
ered the most interesting variants to be the “allST93” or “someST93” variants because
these categories would potentially identify variants that could explain the increased
overall pathogenesis of ST93 in humans (category iii) and would allow us to identify
variants within ST93 associated with human clinical outcomes and phenotypes (cate-
gory iv).

Common variants in ST93. Variants that are in all ST93 strains but not in the other
sequenced strains (or the reference genome) can potentially tell us something about
what differentiates strains in ST93 from other Ugandan strains. We identified 5,110
variants common to all 38 ST93 genomes (4,681 SNPs and 429 small indels). These
variants were dispersed across the genome and associated with 2,575 genes and 140
hypothetical RNAs (Fig. 3; see also Table S1 in the supplemental material). The majority
of these genes had one or a small number of variants, while a few genes had a very high
number of variants (Table S1; 23 genes with at least 10 variants). The proportion of
named genes in this set (8%, 2 of 24) matches that in the full gene set (8%, 686 of
8,338). The proportion of genes with a description (i.e., those not correlated to the
“hypothetical protein” or “hypothetical RNA” classification) is actually lower in this gene
set (33%) than in the whole gene set (49%; this difference was shown to be significant
[P � 0.0001] by the Fisher exact test).

ST93 clade-specific variants. Examining the phylogenetic tree of the ST93 COAT
strains, we surprisingly identified a well-supported split between the ST93 strains
(Fig. 2B), with 20 of the sequenced strains in one group (“clade A”), 16 strains in a
second group (“clade B”), and 2 ST93 strains outside the primary clades. Patient survival
was approximately evenly split between the clades—7 patients that died had strains
from clade A whereas 10 patients that died had strains from clade B (Fig. 2B) (Fisher’s
exact test, P � 0.18). We identified 97 variants that differentiate strains in one clade
from the other; 60 variants were unique to and in all clade A strains, and 37 variants
were unique to and in all clade B strains. Clade-specific variants were located through-
out the genome (Fig. 4A) in 96 different genes, indicating that the differences between
the two clades appear to involve the entire genome and not only a specific region. All
except one of the genes contained only a single clade-associated variant— only
CNAG_06422 in clade B contains two variants in the 5= untranslated region (5=UTR) that
are three bases apart. The distributions of variant classes differed between the two
clades (chi-square test; �2 � 13.44, df � 4, P � 0.009); an increased number of
nonsynonymous and decreased downstream SNPs were observed in clade A compared

FIG 1 Summary of variants identified among all strains. (A) The number of variants per gene with a long
right tail. The inset panel presents the same data magnified to show genes with at least 50 variants for
visualization purposes. (B) There was no correlation between gene length and the number of variants per
base pair in each gene (P � 0.20).
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to clade B (Fig. 4B). Twenty-seven clade-specific mutations caused nonsynonymous
amino acid changes (21 in clade A, 6 in clade B), and one small insertion mutation was
present in clade A (Table S2). Although the majority of these variants are in genes
that have not been characterized, four are in the following genes of known function:
LIV11 (CNAG_05422), encoding a virulence protein of unknown function; HSX1
(CNAG_03772), encoding a high-affinity glucose transporter; PTP2 (CNAG_05155), en-
coding a protein tyrosine phosphatase; and SPT8 (CNAG_06597), encoding a predicted
saga histone acetyltransferase complex component.

In addition to survival rates, we also determined whether variants in the ST93 strains
were associated with clinical measures of disease, with cerebrospinal fluid (CSF) im-
mune cytokine levels, or with in vitro phenotypes (25, 26) (Table 1) (see Materials and
Methods for more details). We collectively refer to these three classes of phenotypes as

FIG 2 Phylogenetic analysis of all sequenced strains. (A) The majority of ST93 strains fall into two well-supported clades, magnified in panel B for ease of viewing
as follows: ST93A (purple background) and ST93B (yellow background). Bootstrap values of �50 are indicated with the numeric bootstrap value. A red diamond
at the end of the terminal branch indicates a strain isolated from a patient who died.
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FIG 3 Variants that were common to all ST93 genomes are dispersed among 2,715 genes. A small
number of clustered genes had a large number of variants. Genes with more than 20 variants and named
genes are indicated.

FIG 4 Clade-specific variants. (A) Variants that are specific to ST93A (purple) and ST93B (yellow) clades are
distributed across the genome. (B) Upstream variants represent the majority class found in all ST93 genomes
(“allST93”) and among the variants that are specific to either clade. In contrast, ST93A variants were more likely to
be nonsynonymous and less likely to be downstream than the allST93 or ST93B variants. The distributions of the
ST93A and ST93B variant classes are significantly different (P � 0.009). (C) IL-2 cytokine levels in the CSF and in vitro
phagocyte uptake levels differed between ST93A and ST93B strains (t test results: IL-2, P � 0.022; uptake,
P � 0.011).
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“quantitative infection phenotypes.” We identified a significant association between the
ST93 A/B clade and the in vitro macrophage uptake rate and patient CSF interleukin-2
(IL-2) level (Fig. 4C) (nonparametric Wilcoxon rank sum test; uptake W � 226, P � 0.011;
IL-2 W � 66.5, P � 0.022). There was not a significant relationship between ST93 clade
and the other quantitative infection phenotypes (see Fig. S1A in the supplemental
material; nonsignificant t test results are listed in Table S3).

Variant association with survival and quantitative infection phenotypes. Our
primary objective was to look for associations between the identified variants and
patient survival rate or quantitative infection phenotypes. To do this, we parsed the
5,605 variants that were in some (but not all) of the ST93 genomes, with the goal of
minimizing the number of statistical tests that we would have to perform to reduce the
likelihood of false positives (Fig. 5). We removed variants that were in very few (�4)
strains, with the rationale that for these variants we would have low power to detect
a significant result and low confidence if we did. This removed 75% of the variants (the
majority of variants, 47%, were in only a single genome). We also removed variants that
mapped to either the centromeric or extreme telomeric regions. The centromeric
region in C. neoformans is enriched for transposable elements (27), and the level of
sequence misalignments that lead to false variant calls is high in these regions. Finally,
we also removed variants without a predicted function, i.e., synonymous and intergenic
variants; we acknowledge that these variants could have a fitness effect and that their
removal might introduce bias. This left us with 652 variants.

To identify variants associated with patient survival, we conducted logistic regres-
sion tests independently for each variant against the number of days that a patient
survived from the date of enrollment in the COAT trial. The test results for 12 variants

TABLE 1 Survival and quantitative infection phenotypes measured from participants
enrolled in the COAT trial

Class n Phenotype variable

Survival 38 Patient survival

Clinical parameters 38 CD4 T cell
35 CSF white cell
31 CSF protein
35 HIV load
37 CSF clearance rate (EFA)
30 CSF CrAg LFA titer

Immune cytokines 36 IL-1�
36 IL-2
36 IL-4
36 IL-5
36 IL-6
36 IL-7
36 IL-8
36 IL-10
36 IL-12
36 IL-13
36 IL-17
36 G-CSF
36 GM-CSF
36 IFN-�
36 MCP-1
36 TNF-�
36 MIP-1�

In vitro characteristics 37 Absolute growth at 30°C
37 Fluconazole MIC
37 Amphotericin B MIC
37 Cell wall chitin
38 Macrophage adherence
38 Macrophage uptake
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from 7 genes were statistically significant (Table 2). Three of these genes are named:
CNAG_06574 encodes APP1, a cytoplasmic protein involved in extracellular secretion
and reduced phagocytosis (28); CNAG_05662 encodes ITR4, a protein involved in
transport or sensing of 5-carbon and 6-carbon sugar alcohols (e.g., inositol, mannitol,
sorbitol) (29–31); and CNAG_05663 encodes SCW1, a protein with homology to a cell
wall integrity protein. The other four genes are listed as encoding “hypothetical
proteins” on FungiDB.

We took two complementary approaches to look for an association between the
variants and the quantitative infection phenotypes. Our first tactic was to treat all
measured phenotypes as independent. For our second tactic, we used principal-
component analysis (PCA) to distill the 30 measured phenotypes into a smaller number
of independent variables. Due to the nature of data collection for these types of
phenotypic data, some strains were missing data for some phenotypes (Table S4). The
most consequential example was that of two strains missing all cytokine data.

For the first tactic, we analyzed phenotypes in each class as independent data sets
in a logistic regression approach (Fig. 5), similarly to the approach used for patient
survival. Due to missing data, the tactics taken to reduce the number of statistical tests
left us with 466 variants in 230 genes for the cytokine data set (a subset of the 652
variants in 328 genes for the survival, clinical, and in vitro data sets) (Fig. 5). For each
data set, we then conducted logistic regression analyses for each variant against each
phenotype. Across all tests, 207 variants from 115 different genes were significant for
at least one phenotype. The majority (138 variants) were significant for a single
phenotype. To partially correct for false positives, we focused our further analyses only
on the variants that were significant for at least two phenotypes (“class a”), on multiple
significant variants that were identified in the same gene (“class b”), or on variants that

FIG 5 Flow chart for the bioinformatic approaches used to identify C. neoformans genes associated with survival
and quantitative infection phenotypes. Survival was analyzed with logistic regression. Two complementary
approaches were used for quantitative analysis of the infection phenotypes: (i) logistic regression followed by
cluster analysis and (ii) principal component analysis (PCA). The clinical parameters, immune cytokines, and in vitro
characteristics analyzed are listed in Table 1.
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TABLE 2 Significant variants from the linear regression analysisa

Geneb Chr
Expression
categorye Variant position(s) Effect(s)c Classd Phenotypes

05185 4 D 667433; 667446 Up ab Survival, uptake; uptake
02176 6 D 988405; 988733; 988843; 988922;

989188; 989334; 989490; 989732;
990771; 990777; 990851; 990885;
991027

Down; NS; NS; NS;
NS; NS; NS; NS; NS;
NS; NS; NS; Up

ab Chitin, SERT; IL-1�, IL-13, MCP-1, MIP-1�; MIP-1�;
LFA titer; IL-12; AMP; HIV RNA, SERT; IL-2;
IL-10, MIP-1�; MIP-1�; IL-10, MIP-1�;
SERT; IL-13, TNF-�, survival

06574 7 E 164473; 164887; 164926; 165027;
165704; 165873; 166309; 167135;
167224; 167292; 167370

Up ab HIV RNA; IL-2, TNF-�; IL-2, MIP-1�; MIP-1�;
survival, EFA; IL-13; growth; IL-13;
GM-CSF; IL-1�, G-CSF, MIP-1�, uptake;
CD4, uptake

04373 9 E 705343; 706175 Up ab IL-8, EFA; survival
07026 12 D 11092; 11094; 11400; 11406;

11407; 11410;11413
Up ab IL-1�, IL-13, survival, EFA; IL-13, survival,

LFA titer; IL-1�, IL-7, IL-13, LFA titer; IL-1�,
IL-7, IL-13, LFA titer; IL-1�, IL-7, IL-13, LFA titer;
IL-1�, IL-7, IL-13, LFA titer; IL-1�

05663 14 D 910323; 910328; 910555 Down ab TNF-�; IL-1�, IL-13, TNF-�; survival
05662 14 D 910742; 910822; 910834; 910926;

910939; 910964; 910966; 910979;
911099; 911129; 911206; 911262;
911292; 911308; 911321; 911352

Down ab AMP; survival, FLC; survival; SERT; growth,
SERT; survival, AMP; survival; survival,
uptake; IL-12, GM-CSF, growth, TNF-�, MCP-1;
IL-12, IL-13, IL-17, MIP-1�, TNF-�, growth,
FLC, AMP, SERT; IL-8, MCP-1, MIP-1�;
MCP-1; IL-2; adherence; IL-5; MCP-1

00014 1 E 47564; 47575; 47671 NS b G-CSF; G-CSF; GM-CSF
00363 1 E 927896; 927901 NS b IL-2; IL-2
07950 1 N 975152; 975212; 975397 Up ab IL-8, HIV RNA; IL-4, IL-6, IL-8, GM-CSF, IFN-�,

FLC; EFA
06704 2 D 270700 Up a IL-2, protein
02798 3 E 750294 Up a CD4, AMP
06876 5 N 7093 Down a IFN-�, MIP-1�, TNF-�
01371 5 D 475470 Up a MCP-1, HIV RNA
01241 5 D 836479; 836697; 836899 Up ab IL-2; IL-4, IL-5, IL-7, IL-17, GM-CSF, TNF-�,

chitin; IL-5, IL-12, IL-13, IL-17, G-CSF, TNF-�
02475 6 D 221273; 221275; 221282 Up ab IL-7, growth; growth; growth
02177 6 E 990701 Up a IL-1�, IL-6, IL-10
02112 6 E 1160524; 1160528; 1160532 Up b AMP; AMP; AMP
06525 7 D 11056; 14006 NS; Up ab IL-5, IL-10; IL-6, IL-8
12610* 7 D 49744 Up a MCP-1, uptake
05746 7 E 752861 UTR—3 a IL-17, GM-CSF, MCP-1, TNF-�
05913 7 E 1205599; 1205600 Up ab MIP-1�, adherence; IL-13, IL-17, MIP-1�,

adherence
05937 7 D 1263610 Up ab Uptake, SERT
07703 7 D 1341024 NS a IL-6, IL-8
06968 8 E 1383765 Indel a IL-12, IL-17
04100 9 N 5213; 7729; 8171 Up ab Adherence, FLC, SERT; growth; EFA, SERT
04102 9 D 10033 Down a GM-CSF, EFA
04179 9 D 220963 Up a EFA, SERT, protein
04535 9 E 1115286 Up a IL-17, G-CSF, LFA
07837 10 D 13558; 15288; 15302 Up; Down; Down b IL-2; WBCc; CD4
04922 10 D 18908; 18915; 18933; 18941;

18988; 18992; 18997
Up b IL-2; IL-2; IL-2; IL-2; adherence; adherence;

adherence
08006 11 E 804710; 804742 Up ab IL-4, IL-5, IL-6, MIP-1�, TNF-�, adherence,

chitin; IL-4, IFN-�, MCP-1, adherence
01802 11 D 966644; 966669; 966700 Up b WBC; IL-2; IL-7
05987 12 D 14009; 14035; 14125;14197;

14202; 15014
NS; NS; Indel; NS;

Indel; Up
ab IL-2; IL-2; chitin; EFA, adherence; EFA, adherence;

adherence
06169 12 E 502808; 502888; 502890; 503049;

503112; 503311; 503313; 503321;
503327; 503401

Down ab IL-8; GM-CSF, growth; IL-6, IL-8, GM-CSF; GM-CSF,
HIV RNA; HIV RNA, WBC; G-CSF; IL-12, IL-13,
G-CSF; IL-12, IL-13, G-CSF, MIP-1�; IL-12,
IL-13, MIP-1�; IL-10, chitin

06256 13 N 11118; 11130 Up ab; b IFN-�, TNF-�; TNF-�
13108* 13 N 128625; 128715; 128729 Up ab IL-13, G-CSF; IL-13, G-CSF; IL-13, G-CSF
06332 13 D 219021; 219311; 219312 Up b Adherence; EFA; EFA
06422 13 E 436551; 436554 Up b IL-2; IL-2
06490 13 D 655915 Indel a Protein, HIV RNA, CD4

(Continued on next page)
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fulfilled both criteria (“class ab”). This narrowed the list to 145 variants from 40 genes
and 3 hypothetical RNAs, with 13 variants in class a, 36 variants in class b, and 96
variants in class ab (Table 2) (full information about significant variants, including class,
is provided in Table S5 and full statistical information about each significant variant and
phenotype in Table S6).

Following the use of the default parameters described for the SnpEff program, we
used a very broad definition for calling variants upstream or downstream variants
(�5 kb). Over 80% of the significant variants were located either upstream or down-
stream of genes (86 variants upstream, 34 variants downstream), with 20% within 1 kb
(Table S6). Of the remaining variants, 21 were nonsynonymous, while 4 were indels. The
majority of significant genes contained multiple significant variants (Table 2). In some
cases, different variants in the same gene influenced the same phenotype, generally
because the multiple significant variants were linked (e.g., three nonsynonymous
variants in CNAG_00014, with the majority of ST93 strains falling into two haplotypes;
one upstream SNP and two upstream insertions in CNAG_02112, with two haplotypes
that influenced amphotericin B resistance). In other cases, such as that of CNAG_07950,
there were six different haplotypes and three significant upstream variants that were
associated with 8 unique phenotypes (e.g., IL-8 was associated with two variants, while
HIV RNA, IL-4, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF],
gamma interferon [IFN-�], fluconazole MIC, and early fungicidal activity [EFA] were each
associated with a single variant).

It was unavoidable that, even after we minimized the number of tests and imple-
mented the variant class criteria described above, some of the identified variant � trait
associations would represent false positives. To determine the genes that we had most
confidence in, we conducted a post hoc bootstrap procedure on all identified class a, b,
and ab variants. For each variant � significant trait association, the data were random-
ized 500 times (i.e., the measured phenotype was randomly assigned to one of the
observed genotypes) and the logistic regression model was rerun to compare the
observed estimate to the bootstrap replicate estimates. For 74 cases (24%), there were
at least 25 (i.e., �5%) bootstrap replicates with estimates more extreme than the
observed estimate (Table S7). These 74 cases predominantly involved a subset of traits,
namely, the traits measured in vitro (macrophage adherence and uptake, cell wall
chitin, antifungal drug resistance, and absolute growth), the levels of the cytokines
granulocyte colony-stimulating factor (G-CSF) and GM-CSF, and LFA titer. However, the
results of this cross-validation analysis emphatically did not influence our overall screen
conclusions. Only five genes (CNAG_00014, CNAG_02112, CNAG_05185, CNAG 05937,
and CNAG_12610) no longer met the criteria identified above.

We also conducted PCA as a second tactic to reduce the potential influence of
phenotypic correlation on the results (Fig. 5). As PCA requires complete data sets, we

TABLE 2 (Continued)

Geneb Chr
Expression
categorye Variant position(s) Effect(s)c Classd Phenotypes

05450 14 E 342562 NS a IL-6, IL-7, IL-12, IL-13, G-CSF, MIP-1�
05661 14 D 908850; 908994; 909011; 909638;

910152; 910181
Up ab IL-8, GM-CSF, IFN-�, MCP-1, MIP-1�; uptake,

FLC; IL-1�, IL-8, MIP-1�, uptake, FLC;
adherence; uptake; IL-1�, IL-6, IFN-�, HIV RNA

13204* 14 E 924025; 924047; 924049; 924050 Up b GM-CSF; IL-13; IL-13; IL-13
aThe gray block denotes genes with variants associated with survival; gene numbers and variant positions that are associated with survival are indicated in bold. Dark
gray text indicates genes, variants, and phenotypes that were identified as lower confidence in the post hoc bootstrap analysis. Semicolons are used as separators of
different variants. When only one effect is listed, it is common among all variants of the gene. Chr, chromosome.

bGene number corresponds to the CNAG number from the Cryptococcus neoformans H99 reference genome on FungiDB. Hypothetical RNAs are indicated with an
asterisk (*).

cEffect data designate location or type of variant as follows: Up, upstream of the coding region; Down, downstream of the coding region; NS, nonsynonymous change
in the coding region; Indel, small insertion or deletion.

dClass type designations are indicated as follows: a, the gene(s) has one variant significant for at least two phenotypes; b, there are multiple variants in the same
gene with at least one significant phenotype each; ab, both criteria are fulfilled.

eE indicates expression; D indicates differential expression between the VNI and VNII clinical strains in the CSF; N indicates no expression detected. Data are from
reference 32 and were analyzed in FungiDB as percentile of expression compared to all other genes in the experiment.
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used data from the 27 phenotypes that had missing data from only three or fewer
strains. That is, we excluded cryptococcal antigen (CrAg) lateral flow assay (LFA) titer,
HIV RNA viral load, CSF protein, and CSF white blood cell (WBC) data (Table S4) and had
to exclude 8 strains (Ugandan clinical strain 212 [UgCl212], UgCl332, UgCl357, UgCl422,
UgCl447, UgCl461, UgCl541, and UgCl549) (Table 1). The “prcomp” function from R
programming language was used to perform PCA on the two phenotypes which were
scaled to have unit variance and shifted to be zero centered. We continued with the
first two principal components by comparing the observed results to 20 data sets
where the phenotypic data were randomized among strains (Fig. S2A). Logistic regres-
sion analysis was run for each of the 466 variants that passed filtration against PC1 and
PC2. The PCA yielded only 16 significant variants in 12 genes (Table 3). Only one of
these genes, CNAG_07727, was not identified in the first analysis, and 12 of these
variants were previously found to be statistically significant. Thus, implementation of
our two analysis tactics—the linear regression analysis and the PCA—yielded an
overlapping set of variants and similar outcomes.

The majority of genes with a high number of significant variants were also genes
with high numbers of sequenced variants and potentially significant variants (Fig. 6). In
addition to variation among genes in regard to the number of significant variants
within a gene (“sig variants,” ranging in number from 1 to 34), there were also variations
in the number of variants that were identified within a strain (“sequenced variants”;
range, 1 to 210) and in the number of variants that passed our filters (“potentially

TABLE 3 Significant variants from PCA

Gene Chr Position Effect PCA1 P value PCA2 P value

CNAG_07950 1 975212 Upstream 0.047 0.141
CNAG_01241 5 836697 Upstream 0.04 0.505

5 836899 Upstream 0.025 0.29
CNAG_02176 6 988733 Stop gained 0.047 0.749

6 989490 NS 0.834 0.03
6 989960 NS 0.967 0.039

CNAG_07703 7 1341024 NS 0.031 0.289
CNAG_07727 8 818838 Upstream 0.036 0.726
CNAG_08006 11 804710 5=UTR 0.048 0.312
CNAG_05987 12 19741 Upstream 0.355 0.031
CNAG_06169 12 503321 3=UTR 0.048 0.795
CNAG_05450 14 342562 NS 0.024 0.142
CNAG_05661 14 908850 Upstream 0.042 0.928
CNAG_05663 14 910328 Downstream 0.042 0.12
CNAG_05662 14 911099 Downstream 0.045 0.143

14 911129 Downstream 0.048 0.046

FIG 6 Comparing variant frequencies across the genome. Data represent relative frequencies of variants
per gene for significant genes (red dots) compared to all sequenced variants across all genomes (black
line) and all variants that were variable within ST93 genomes (gray line). The only genes shown here are
those with at least one potential significant variant; hence, the gray and black lines do not reach 0.
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significant variants”; range, 1 to 32). These results highlight a limitation of genetic
association screens such as the one that we performed. Without additional biological
validation, it is difficult, if not impossible, to ascertain whether a given gene has many
significant variants because of strong selection acting on that gene (e.g., if a knockout
phenotype is beneficial, there are many different positions that can reduce gene
expression or protein levels) or because of relaxed selection and chance (i.e., if there is
relaxed selection, then many variants could be present, with statistical significance
arising by chance). However, the fact that we do see areas of discordance between all
the sequenced variants, potentially significant variants, and significant variants sug-
gests that many of our significant variants do not represent just a statistical artifact.

In vivo virulence of identified genes. Our goal was to identify pathogen variants
in genes that impact human clinical disease phenotypes. We reasoned that, for the
gene variants to have a high probability of influencing human clinical disease, they
should be expressed in vivo. Expression data are not available as part of the COAT data
set, so how the specific variants influence gene expression in humans is unknown.
However, data representing levels of in vivo gene expression in cerebrospinal fluid (CSF)
are available from two human patients infected with two different, genetically distinct
strains (32). We analyzed these data for in vivo expression of the 40 genes and 3
hypothetical RNAs (Table 2). Thirty-seven (37/40) of the genes and two (2/3) of the RNAs
were expressed in at least one of the strains. Interestingly, we noted differential
expression of 56% of the genes between the two strains, but because the strains were
not fully sequenced, we were unable to determine what variants they contain.

Mukaremera and colleagues recently showed that the mouse inhalation model of
cryptococcosis accurately recapitulates human infections and can be used to dissect C.
neoformans genetic factors that influence human disease (19). Thus, as a first step to
probe the biological significance of the genes identified in our analyses, we tested the
virulence of 17 available KN99� deletion strains in the mouse inhalation model.
Six (35%) of the tested deletion strains had a significant effect on mouse survival
compared to the control KN99� strain; three strains (CNAG_02176, CNAG_06574, and
CNAG_06332) had increased virulence, and three strains (CNAG_06986, CNAG_04922,
and CNAG_05662) had decreased virulence (statistical data are listed in Table 4, strains
with differences that were found to be statistically significant are shown in Fig. 7, and
strains with differences that were found not to be statistically significant are shown in
Fig. S3A). Although the use of gene deletion mutants represents only one way to
biologically probe whether a candidate gene has a true virulence phenotype, we did
find that the number of significant variants in a gene (Table 2) was a significant

TABLE 4 Survival curve statistical results

Gene knockout
�2 statistic
(df � 1) P value

CNAG_00363 (tco6�) 0.05 0.82
CNAG_02176 9 0.0027
CNAG_04373 3.07 0.08
CNAG_04535 2.79 0.095
CNAG_04922 9.97 0.0016
CNAG_05662 (itr4�) 6.22 0.013
CNAG_05663 0.61 0.43
CNAG_05913 0.07 0.79
CNAG_05937 0.09 0.77
CNAG_06169 0.13 0.72
CNAG_06332 4.05 0.044
CNAG_06490 1.02 0.31
CNAG_06574 (app1�) 9 0.0027
CNAG_06704 5.83 0.016
CNAG_06876 0.05 0.82
CNAG_06986 7 0.0082
CNAG_07703 0.05 0.31
CNAG_07837 1.8 0.18
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predictor of the deletion mutations having a virulence effect (linear model, F1,15 �

8.493, P � 0.011).
In vivo and in vitro analysis of itr4� and clinical strains. The gene with the

highest number of significant variants in our candidate gene list was CNAG_05662
(ITR4), which has been reported to be a member of the inositol transporter gene family
(30, 31). The itr4� mutant strain had reduced virulence in the mouse model whereas the
itr4�:ITR4 complement strain had virulence equivalent to that of laboratory reference
background strain KN99� showing that the ITR4 deletion is responsible for the viru-
lence defect in the itr4Δ mutant (Fig. 8A) (mutant strain itr4� chi-square statistic for test
of equality � 6.22, P � 0.013; complement strain itr4�:ITR4 chi-square statistic � 0.51,
P � 0.47). In this lower-inoculum experiment, where the infection was less likely to
overwhelm the initial immune response, three of the mutant strain itr4�-infected mice
survived until the experiment was ended on day 44 (Fig. 8A). Terminal CFU from the
brain and lungs of the survivors showed complete fungal clearance in one mouse and
a low (2 � 102 CFU) fungal burden in the lungs in the second mouse. The third mouse
had 5.64 � 105 CFU in the lungs and 1.35 � 104 CFU in the brain. Evaluation of the
fungal burden at 7 days postinfection showed higher levels of itr4Δ mutant CFU in the
lungs than of reference strain KN99� CFU and complement strain itr4�:ITR4 CFU and no
mutant strain itr4Δ CFU in the brain (Fig. S3B), suggesting that the reduced pathogen-
esis observed in the itr4� mutant was likely due to reduced growth in or delayed
dissemination to the brain.

To further determine the role of the genetic variants in the biological function of
ITR4, reference strain KN99�, mutant strain itr4�, and three clinical strains (UgCl389,
UgCl462, and UgCl443) were tested for growth with inositol and inositol uptake. The
variants associated with the ITR4 locus in these clinical strains are proximal to the
coding region— both UgCl389 and UgCl462 have 11 single nucleotide polymorphisms
(SNPs) immediately downstream of the coding region whereas UgCl443 contains the
H99 reference allele for ITR4 (Fig. 8B). All the clinical strains showed enhanced growth
with inositol only at 37°C compared to reference strain KN99�, and their levels of
growth were similar to that seen with the itr4Δ mutant (Fig. 8C). UgCl389 and UgCl462
were also more efficient at inositol uptake, while the efficiency of uptake by UgCl443
was similar to that seen with reference strain KN99� but the mutant strain itr4Δ had
decreased inositol uptake (Fig. 8D). Taken together, these data highlight the complex
nature of the multiple variants across the clinical strains. Due to differences between

FIG 7 Deletion strain virulence in mice. Groups of five 6-to-8-week-old C57BL/6 mice were infected
intranasally with 5 � 104 cells. Progression to severe morbidity was monitored for 35 days, and mice were
sacrificed when endpoint criteria were reached. Strains were tested in two separate experiments
(indicated as experiment 1 [E1] and E2, respectively). Statistical analysis of the survival curves are
presented in Table 4.
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the clinical strains with respect to their genetic backgrounds, interpretation of the
impact of specific variants and/or gene alleles is challenging.

DISCUSSION

Virulence is a multifaceted phenotype, as many different pathogen and host char-
acteristics determine the severity of a given infection. Here we paired a powerful data
set from the Cryptococcal Optimal ART Timing (COAT) trial in Uganda (26) with
pathogen whole-genome sequencing technology to identify the candidate C. neofor-
mans genes that were statistically associated with both survival and quantitative
human infection phenotypes. The technique of using genome-wide association studies
(GWAS) to uncover genic variants linked to disease was developed 14 years ago in the
context of human disease genetics (33). Here we looked for associations between
variants within 38 ST93 C. neoformans isolates from participants enrolled in the COAT
trial both for patient survival and for an additional 29 associated clinical, immunologic,
and in vitro phenotypes. We employed two complementary tactics to identify candidate

FIG 8 Analysis of ITR4 through in vivo virulence and in vitro growth and inositol uptake. (A) Groups of 10 6-to-8-week-old C57BL/6 mice were infected
intranasally with 1 � 103 cells. Progression to severe morbidity was monitored for 44 days, and mice were sacrificed when endpoint criteria were reached. (B)
Schematic diagram showing locations of the variants in the UgCl389 and UgCl462 clinical isolates relative to the ITR4 coding region. UgCl443 has the H99
reference allele. (C) Growth assay of C. neoformans wild-type strain KN99�, itr4� mutant, and clinical strains on medium with different inositol levels. Yeast cells
were cultured in YPD medium. Equal cell concentrations were spotted as 10-fold serial dilutions onto YNB plates made with 1% glucose, 1% inositol, or 1%
glucose and 1% inositol. Plates were incubated at 30°C or 37°C, and growth was examined after 4 days. The assay was repeated three times with similar results.
(D) Inositol uptake analysis of C. neoformans strains. Yeast cells were mixed with 3H-labeled inositol and incubated at 30°C for 10 min in triplicate (repeated
twice with similar patterns). Error bars indicate standard deviations of results from the three replicates. All strains presented were grown on the same plate,
but some strains that were present on the plate have been removed for clarity. Each white line indicates a location where a strain was removed.
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genes. The first treated each measured phenotype as independent and yet included
only genes with a variant significantly associated with multiple phenotypes (13 genes)
or genes with multiple significant variants (10 genes) or both (20 genes). The use of this
“class” approach to identify variants in the logistic regression analysis probably reduced
the number of false positives in our analysis but likely also introduced bias into the
analysis through exclusion of single variants associated with one phenotype. We also
conducted a PCA to examine the first two principal components from a PCA of the 27
phenotypes and 30 strains with sufficient data. The resultant reduction of power was
unfortunate but not surprising in dealing with human data. The detrimental impacts of
missing clinical data have been previously discussed (34) and indeed represent the
reason that we employed both tactics. The PCA yielded a total of 12 genes, including
11 genes that overlapped those identified in the first analysis and 1 additional gene.
The observation that the logistic regression analysis performed using our class ap-
proach and the PCA yielded quite similar outcomes provides additional confidence that
significant bias was not introduced by the class approach. Combining the data, we
identified 40 candidate C. neoformans genes and three hypothetical RNAs associated
with infection phenotypes among the ST93 strains.

The statistical analysis was blind with respect to any prior knowledge of the genes
and thus did not depend on prior annotation. Accordingly, the majority of genes that
we identified have not yet been named, and the proteins encoded by roughly half
(n � 19) of those genes are listed as “hypothetical proteins” on FungiDB. Interestingly,
only 2 of these 19 genes are conserved among fungal taxa, and curating information
about orthologues from FungiDB (https://fungidb.org/fungidb/) suggests that the ma-
jority of others either are unique to C. neoformans or have orthologues only in the very
closely related species complex C. gattii (see Table S7 in the supplemental material).
This is consistent with the logic of Liu et al. (7), who purposely targeted genes that did
not have homologues in Saccharomyces cerevisiae during the construction of the
original H99 gene deletion collection (an 1,180 gene collection in C. neoformans H99,
which corresponds to �20% of the protein-coding genes) (14).

We took advantage of the newer KN99� gene deletion collection (35) and found
that 35% (6/17) of the available gene knockouts had an effect on virulence in mice. The
significant genes with a virulence change in mice include two named genes, ITR4
(CNAG_05662) and APP1 (CNAG_06574), and one hypothetical protein-encoding gene
(CNAG_02176), as well as genes encoding two additional hypothetical proteins that
have orthologues only in closely related species (CNAG_04922 and CNAG_06332) and
one hypothetical protein with broad taxonomic distribution (CNAG_06968). The app1Δ
mutant has previously been shown to have decreased virulence in mice (28). Interest-
ingly, this contradicts date from our mouse model, which showed increased virulence
of the app1Δ mutant. This difference could be due to the differential immune responses
in BALB/c mice (previous study, type 1 immune response) and C57BL/6 mice (current
study, type 2 immune response) and likely gives a hint with respect to the mechanism
of APP1 in human disease.

Intriguingly, ITR4 (synonym PTP1) was the top hit in a screen that identified genes
that were overexpressed in an intracellular environment (amoebae and murine mac-
rophages) compared to the laboratory medium (yeast extract-peptone-dextrose [YPD])
(29). In that study, the itr4Δ mutant did not differ from the wild-type strain in mouse
assays or Galleria mellonella virulence assays (29), though those previous studies were
performed in a genetic background different from the background of our KN99�

reference strain and in BALB/c mice. Using gene complementation, we clearly show the
virulence defect in the itr4Δ mutant is due to deletion of the ITR4 gene. And yet the
phenotypic data showing enhanced growth at 37°C on inositol but reduced inositol
uptake of the itr4� mutant, combined with enhanced growth and uptake by the clinical
strains, are not straightforward and not conclusive with respect to gene function. All of
the clinical strains appeared to be better adapted for growth and uptake of inositol
than the KN99� reference strain. This is not surprising, given that the clinical strains
were isolated from the central nervous system, which is an inositol-rich environment.

Cryptococcus Genomic Differences Impact Disease ®

July/August 2019 Volume 10 Issue 4 e01440-19 mbio.asm.org 15

 on F
ebruary 21, 2020 at U

niversity of M
innesota Libraries

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://fungidb.org/fungidb/
https://mbio.asm.org
http://mbio.asm.org/


Because most of the ITR4 gene variants are proximal to the coding region, these
alterations may alter expression of the ITR4 gene, or transcript/protein stability in vivo,
rather than abolish gene expression such as occurs in the itr4� mutant. This could
explain the differences between the in vitro inositol phenotypes that we observed in
our clinical isolates and those shown by the mutant. It is also possible that the genetic
background of the clinical isolates influences the function of the different ITR4 gene
variants, as these genes are known to be part of larger inositol acquisition and
utilization pathways. Additional interactions between variants and pathways may also
exist. Combinations of variants in different genes within one isolate might also be
important. If so, standard genetic replacement and allele swap experiments may
disrupt these gene combinations. Instead, quantitative trait locus (QTL) or linkage
disequilibrium strategies may be necessary to define networks of variants that interact.
Larger clinical populations will be needed for these types of analyses.

There was no clear relationship between the genes that were identified in both of
our statistical analyses and the gene deletion virulence in mice (five genes were
significant in both, including two with a significant gene deletion virulence effect;
Table S7). We note, however, that although data have indicated a good link between
strain survival in mice and human virulence (19), there are two major limitations with
respect to interpretation and extrapolation of the virulence tests that we performed in
this study. The first is that the phenotype of a gene knockout does not necessarily
recapitulate the effect of a natural point or indel mutation (36–38). Importantly, variants
located upstream of a gene were extremely prevalent in our data set, suggesting that
they would not be phenocopied with a gene deletion if an increase in expression is
required to influence the trait. Expression data are not available as part of the COAT
data set, so how the specific variants influence gene expression in humans is as yet
unknown. However, our analysis of the in vivo CSF expression data reported previously
by Chen et al. (32) does suggest that expression differences in these genes can exist
between strains.

The second reason for caution in interpreting the data is that the gene knockout
collection is in the KN99� genetic background. It has previously been shown that
although ST93 and KN99� are both VNI strains, they are phylogenetically quite distantly
related (9). We see this distance in our own data set: 2,941 variants were present in the
closely related ST93 genomes that we sequenced and over 40,000 variants were
present across all the genomes compared to the H99 reference strain. Genetic back-
ground is known to play a significant role in the effect of a mutation. A large study in
Saccharomyces cerevisiae recently found that 16% to 42% of deletion phenotypes
changed between pairs of strains, depending on the environment (39). To fully probe
the influence of the variants and genes that we identified in our screen, these variants
need to be studied in the ST93 background. Given these limitations, we anticipate that
additional studies will uncover more genes with an impact on pathogenesis from our
study. It would also of course be of general interest to reconstruct a knockout collection
in a strain background more representative of typical clinical strains (14, 23).

We purposefully chose to focus our study on strains from ST93, which was the most
prevalent ST group among the strains that we sampled from participants in the COAT
trial (�63% of all strains). In the COAT trial, ST93 did not significantly influence mortality
(among the patients infected by group ST93 strains, 22 died and 24 survived; among
the patients infected by non-group ST93 strains, 9 died and 16 survived [Fisher’s exact
test P � 0. 45]). ST93 was similarly the most prevalent among patients with advanced
HIV infections in Brazil (20). In contrast, ST93 isolates were less common than ST5
isolates among immunocompetent patients in Vietnam, and non-ST5 strains were
associated with decreased mortality compared to ST5 strains (40). Other studies have
found no ST93 isolates (41, 42). This picture of geography having a major impact on
which group is most prevalent raises the issue of whether it is merely chance or the
effect of selection that sorts lineages geographically. How this geographic distribution
of genotypes affects underlying variants is unknown. It is probable that the genes
identified in this study, using ST93 as a model, will also be found to be important in
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other genetic backgrounds. It is less clear whether specific variants, especially those
outside the protein-coding region, will be retained across genetic lineages and can be
used as markers to define human disease risk.

As additional “genome-enabled” clinical data sets are constructed, we can hope to
gain a clearer global picture of the link between broad and narrow ranges of genomic
variability and clinical outcome. Our narrow analysis in the ST93 strains was possible
because of the large number of patients infected with this sequence type in Uganda.
Only when similar studies are performed in patient populations throughout the world,
with other dominant STs, or in the context of increased genetic diversity, will we be
able to determine how broadly applicable our study is to the global population of C.
neoformans.

Statistical association techniques using human clinical data, such as those employed
here, offer a complementary approach to genetic screens of mutant collections. They
offer the benefits of not having to choose a particular strain background (typically the
reference strain) and of not having to make decisions about which genes are likely to
be important. For example, the method of selection of genes for the initial C. neofor-
mans knockout collection was biased against genes with homologs in S. cerevisiae and
against C. neoformans-specific genes (7). There are also inherent biases in forward
genetics methods. Here we had only the statistical power to find association with
common variants. The majority of variants that we sampled were singleton variants in
only a single genome (Fig. 1A), and some of these may well have an extremely
important influence on virulence that remained undetected in our current analysis.
Hence, we have treated our pathogen GWAS analysis like a genetic screen; the power
lies in the opportunity to compare studies of different types to find candidate genes or
alleles to focus our attention on.

Our analysis did not identify variants in many of the genes that were previously
identified through in vitro and in-animal mutant screens as virulence factors in C.
neoformans, such as genes involved in capsule formation and melanin synthesis. There
could be several reasons for this result. Importantly, all of the ST93 strains analyzed
were isolated from patients with cryptococcal meningitis; thus, all these strains by
definition are capable of causing disease and in our study the readout was not presence
or absence of disease but rather the severity of disease. Previous studies may have
identified virulence factors involved in the early stages of infection that impact the
ability of C. neoformans to infect and then survive within the host, whereas our study
identified virulence factors that promote or inhibit the progression of disease. Also, our
analysis utilized human clinical data for association with genetic differences between
strains whereas previous studies utilized surrogates (either in vitro conditions or animal
models). By studying genetic differences in the context of human infection, we have
not only the potential to define genes that promote disease in humans but also the
potential to define aspects of the host-pathogen interaction that are specific to C.
neoformans and the human host.

MATERIALS AND METHODS
Ethics statement. Animal experiments were done in accordance with the Animal Welfare Act, United

States federal law, and NIH guidelines. Mice were handled in accordance with guidelines defined by the
University of Minnesota Animal Care and Use Committee (IACUC) under protocol 1607-34001A. Partic-
ipant data were collected as part of the COAT trial (ClinicalTrials registration no. NCT01075152) (26, 43).
All participants were enrolled at Mulago Hospital, Makerere University, Kampala, Uganda. Written
informed consent was obtained from all subjects or a proxy, and all data were deidentified. Institutional
Review Board (IRB) approvals were obtained at both the University of Minnesota (0810M49622) and
Makerere University.

Strain selection. We utilized C. neoformans isolates collected in Uganda as part of the Cryptococcal
Optimal ART Timing (COAT) trial (26). We focused primarily on 38 UgCl COAT strains that had previously
been MLST genotyped as sequence type 93 (ST93), representing the most prevalent ST group in this
collection of strains (25). An additional 18 strains from 10 MLST groups were also subjected to
whole-genome sequencing to represent the strain diversity in Ugandan clinical isolates (9).

Clinical isolates were subjected to colony purification from the CSF of participants that presented at
the clinic with their first episode of cryptococcal meningitis. The ST93 clinical isolate strains were
purposefully chosen to represent strains from both participants who survived (n � 21) and those who
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died (n � 17). Patient infection phenotypes (i.e., clinical and cytokine parameters; Table 1) were mea-
sured on the day that patients were diagnosed with cryptococcal meningitis, prior to antifungal or ART
treatment. Cytokine data were log2 transformed prior to analysis, as described previously (44).

Library preparation and Illumina sequencing. DNA was extracted using the cetyltrimethylammo-
nium bromide (CTAB) DNA isolation method (45). Colony-purified cultures, maintained as glycerol stocks
at 	80°C, were inoculated into 250 ml of yeast extract-peptone-dextrose (YPD) agar in Erlenmeyer flasks
and grown overnight at 30°C with continuous shaking prior to DNA isolation.

Strains were subjected to whole-genome sequencing in two sets. In the first set of strains, genomic
DNA libraries from 16 strains were prepared by the Mayo Bioinformatics Core for 101-bp paired-end
sequencing. The samples were combined into two pools (pool A, UgCl001, UgCl018, UgCl021, UgCl029,
UgCl030, UgCl037, UgCl040, UgCl045, UgCl057, and UgCl107; pool B, UgCl008, UgCl032, UgCl047,
UgCl065, UgCl087, and UgCl093). Each pool was sequenced on a single lane of an Illumina HiSeq 2000
instrument.

In the second set of strains, genomic DNA libraries from the 40 strains were prepared by the
University of Minnesota Genomics Center for 300-bp paired-end sequencing with an Illumina TruSeq
DNA LT kit. The samples were combined into four pools; each pool was sequenced in a single lane of an
Illumina HiSeq instrument (pool 1, UgCl212, UgCl236, UgCl243, UgCl247, UgCl250, UgCl389, UgCl541,
UgCl547, and UgCl549; pool 2, UgCl252, UgCl255, UgCl262, UgCl291, UgCl292, UgCl300, UgCl326,
UgCl332, UgCl357, and UgCl360; pool 3, UgCl362, UgCl377, UgCl379, UgCl382, UgCl390, UgCl393,
UgCl395, UgCl422, UgCl438, and UgCl443; pool 4, UgCl447, UgCl450, UgCl461, UgCl462, UgCl466,
UgCl468, UgCl495, UgCl534, UgCl535, UgCl538, and UgCl546). In the second set of sequencing runs, the
runs generated more than approximately 22 million pass filter reads for pools 1 and 2 and more than
approximately 17 million pass filter reads for pools 3 and 4. In all runs, �70% of the bases represent a
quality value (Q) above Q30. The average library insertion size ranged from 400 to 500 bp. Genome
sequences are available at NCBI under BioProject ID PRJNA549026.

Variant calling. Variant calling for each strain was adapted from the best practices described for
the Genome Analysis Toolkit (GATK v3.3.0) (46–48). For each strain, the two paired-end fastq
files were trimmed using trimmomatic (49) and aligned to the C. neoformans H99 reference genome
(downloaded from FungiDB [http://fungidb.org/fungidb/] on 1 February 2016; “FungiDB-26_
Cneoformans_H99_Genome.fasta”) with bwa mem (50). The output (.SAM) files from all other strains
were converted to .BAM files and sorted, duplicates were marked and indexed, and a final index was built
with Picard tools (http://broadinstitute.github.io/picard). Variants were called for each sample with GATK
HaplotypeCaller run in VCF mode for each strain (with flags – genotyping_mode DISCOVERY – emitRef-
Confidence GVCF -variant_index_type LINEAR -variant_index_parameter 128000 -ploidy 1) to obtain
gVCF files. GATK GenotypeGVCFs was then run to merge the 41 gVCF records. Variants were annotated
with SnpEff (51) followed by GATK VariantAnnotator. SNPs and indels were separated into two tables
from the single merged and annotated VCF file using GATK SelectVariants, VariantFiltration, and
VariantsToTable. Coverage across chromosomes was determined using GATK DepthOfCoverage on the
sorted BAM files.

Phylogenetic tree building. SNPhylo (52), a pipeline designed to construct phylogenetic trees from
SNP data, was used to generate a PHYLIP file from the original VCF. SNPhylo reduces redundant SNP
information resulting from linkage disequilibrium. As we knew a priori that our ST93 samples were highly
related, we ran SNPhylo with the linkage disequilibrium flag set at a very high value (0.99), which still
reduced the number of SNPs by �94% on each chromosome. A total of 7,383 markers were selected. In
SNPhylo, MUSCLE was used to perform multiple alignments and to generate the PHYLIP file.

Bootstrap analysis was conducted using RAxML. A total of 20 maximum likelihood (ML) trees were
generated (-m ASC_GTRGAMMA –asc-corr�lewis), and support values from 100 bootstrap replicates
were determined for the best-fitted ML tree (-m ASC_GTRGAMMA –asc-corr�lewis -p 3 -b 12345 -#100).
Bipartitions were then drawn on the best tree (-m ASC_GTRGAMMA –asc-corr�lewis -p 3 -f b). This tree
was read into R using the read.raxml command in the treeio library. Further tree visualizations were
created using ggtree.

Clinical data. The methods of collection of clinical and immunological data were as described
previously (26, 43). Clinical and immunological data used in this study are listed in Table 1. Briefly, the
clinical parameters of disease were participant mortality due to cryptococcosis (days after initial diag-
nosis), CD4
 T-cell count, cerebrospinal fluid (CSF) white blood cell (WBC) count, serum and CSF protein
levels, HIV load, CSF Cryptococcus clearance rate of early fungicidal activity (EFA), and lateral flow assay
(LFA) measurement of CrAg titer (Immy Inc., Norman, OK). As immunological data, CSF levels of 19
cytokines and chemokines (granulocyte colony-stimulating factor [G-CSF], granulocyte-macrophage
colony-stimulating factor [GM-CSF], interferon-�, tumor necrosis factor alpha [TNF], interleukin-1� [IL-1�],
IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, monocyte chemoattractant protein 1 [MCP-1] [CCL2],
macrophage inflammatory protein-1� [MIP-1�] [CCL3], MIP-1� [CCL4], and vascular endothelial growth
factor [VEGF]) were analyzed. We refer to these cytokines and chemokines collectively as “cytokines.”

In vitro assays of drug resistance, macrophage adherence and uptake, cell wall chitin, and absolute
growth were also performed on the clinical isolates. Drug resistance assays for fluconazole and ampho-
tericin B were performed as described previously (25, 53). MH-S macrophage cell cultures were used to
determine C. neoformans cell uptake by macrophages. Briefly, 5 � 105 MH-S cells per well were incubated
at 37°C with 5% CO2 for 2 h in a 96-well culture plate to allow adherence. C. neoformans cultures were
grown overnight in Dulbecco’s modified Eagle medium (DMEM) supplemented with 2% glucose,
collected by centrifugation, washed, and resuspended in 0.1% Uvitex solution for 10 min. Cells were then
collected by centrifugation and washed, and 5 � 105 cells and 4 �g E1 anti-GXM antibody (54) were
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added to each well in the MH-S culture plate. After 2 h of coincubation, the culture plate was centrifuged
to collect cells, spent medium was decanted, and the mixtures were washed to remove extracellular C.
neoformans cells. Samples were then resuspended in 0.25% trypsin–EDTA for 15 min to release the
adherent cells from the wells and fixed with 3.7% formaldehyde for 30 min on ice. Samples were then
stained with a second anti-GXM antibody (m18b7) conjugated to Alexa Fluor 488 fluorophore (1:2,000)
and phycoerythrin (PE)-labeled CD45 (1:100) in a reaction mixture containing phosphate-buffered saline
(PBS), 1 �g/ml bovine serum albumin (BSA), and 2 mM Tris-HCl. Cells were analyzed on a BD LSRII flow
cytometer (BD Biosciences, Inc.), and data were analyzed using FlowJo software. Gating on Uvitex, CD45,
and m18b7 allowed differentiation of (1) free C. neoformans cells (Uvitex positive [Uvitex
], CD45
negative [CD45	]), (2) free macrophages (Uvitex	, CD45
), (3) macrophages with intracellular C. neofor-
mans (Uvitex
, CD45
, m18b7	), and (4) macrophages with extracellular C. neoformans (Uvitex
, CD45
,
m18b7
). To analyze cell wall chitin content, C. neoformans cells were grown in DMEM supplemented
with 2% glucose, 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (Pen-Strep), and beta-
mercaptoethanol (1 ml/liter) at 37°C overnight and were then fixed for 30 min in 3.7% formaldehyde. The
cell concentration was adjusted to 1 � 106 cells/ml, and the cells were stained with 1 �g/ml calcofluor
white (Sigma-Aldrich)–PBS for 5 min at 25°C and then washed with PBS. The median calcofluor white
fluorescence intensity was then determined for each strain by flow cytometric analysis of the cell
population on an LSR II Fortessa flow cytometer.

Biomarkers analyzed as continuous variables were log2 transformed for normalization, analyzed
again, and then back-transformed for calculation of geometric mean values. All “mean” biomarker values
represent geometric means. Low (“out-of-range”) measurements were set to a value equal to half of the
manufacturer’s listed assay limit of detection (LOD).

Survival curves. Survival curve analyses were performed in three experiments that tested the
virulence of strain KN99� (55) compared to single deletion strains in the following genes deleted:
Experiment 1 (E1)—CNAG_00363, CNAG_02176, CNAG_04373, CNAG_04535, CNAG_04922,
CNAG_05662, CNAG_05663, CNAG_05913, CNAG_06169, CNAG_06332, CNAG_06574, CNAG_06704,
CNAG_06876, and CNAG_07837; Experiment 2 (E2)—CNAG_05973, CNAG_06490, CNAG_06986; Experi-
ment 3 (E3)—CNAG_07703 (35). For E1, five C57BL/6 mice per group were anesthetized by intraperito-
neal pentobarbital injection and inoculated intranasally with 5 � 104 cells suspended in 50 �l PBS,
whereas E2 and E3 used 1 � 104 cells suspended in 50 �l PBS. Animals were monitored for morbidity and
sacrificed with carbon dioxide when endpoint criteria were reached. Endpoint criteria were defined as
20% total body weight loss, loss of two grams of weight in 2 days, or symptoms of neurological damage.
On day 34, the remaining mouse was sacrificed. Lungs and brain were removed and homogenized in
4 ml and 2 ml PBS, respectively. Serial dilutions of the lungs and of the entire homogenized brain were
plated on YPD with chloramphenicol. CFU were counted after 48 h.

Significance was determined using the survfit command from the survival R package (56). Kaplan-
Meier estimators from each knockout strain were compared to the data measured for the KN99� strain
in the relevant experiment. P values were obtained by comparing the two curves using the G-rho family
log rank test (57), implemented with the survdiff function.

ITR4 survival curve. Ten C57BL/6 mice per group were anesthetized and inoculated intranasally with
1 � 103 KN99�, itr4�, or itr4�:ITR4 cells suspended in 50 �l PBS. Animals were treated as described
above. The itr4�-infected mice that survived the infection initially showed early signs of disease (minor
weight loss, reduced activity) but regained weight at later time points. On day 44, the mice were
sacrificed. Lungs and brain were collected from each mouse to determine fungal burden and processed
as described above.

For determination of CFU counts at 7 days postinfection, 4 C57BL/6 mice per group were anesthe-
tized and inoculated intranasally with 1 � 103 KN99�, itr4�, or itr4�:ITR4 cells suspended in 50 �l PBS.
After 7 days, the mice were sacrificed, and lungs and brain were collected and processed as described
above.

Inositol growth assays. Yeast cells of C. neoformans reference strain KN99� and the itr4� mutant
and clinical strains were cultured in YPD medium overnight. Concentrations of overnight cultures were
determined by measuring the optical density at 600 nm (OD600) and were adjusted to the same cell
density. Serial 10-fold dilutions were prepared, and 5 �l of each dilution was spotted on yeast nitrogen
base (YNB) plates with 1% glucose or, 1% inositol, 1% glucose 
 1% inositol. Plates were then incubated
at 30°C or 37°C for 48 h before photography was performed. The assay was repeated at least three times
with similar results.

Inositol uptake assay. The inositol uptake assay was performed following a previously published
method (31). In brief, the Cryptococcus strains were grown in YPD liquid cultures overnight at 30°C. Cells
were diluted in YPD to an OD600 of 1.0, grown at 30°C, and collected at an OD600 of 5.0 by centrifugation
at 2,600 � g for 5 min. Cells were then washed twice with PBS at 4°C and resuspended in 2% glucose to
reach a final concentration of 2 � 108 cells/ml as determined by the use of a hemacytometer. For the
uptake assay, the reaction mixture (200 �l) contained 2% glucose, 40 mM citric acid-KH2PO4 (pH 5.5), and
0.15 �M myo-[2-3H]-inositol (MP Biomedicals) (1 �Ci/�l). An additional 200 �M concentration of unla-
beled inositol (Sigma-Aldrich) was added to the reaction mixtures for competition assays. Equal volumes
of the reaction and cell mixtures (60 �l each) were warmed to 30°C and mixed for the uptake assay,
which was performed for 10 min at 30°C. As negative controls, mixtures were kept at 0°C (on ice) during
the 10-min incubation. Aliquots of 100 �l were removed and transferred onto prewetted Metricel filters
(1.2-�m pore size) on a vacuum manifold. The filters were washed four times each with 2 ml of ice-cold
water. The washed filters were removed and added to liquid scintillation vials for measurements on a
PerkinElmer TRI-CARB 2900TR scintillation counter.

Cryptococcus Genomic Differences Impact Disease ®

July/August 2019 Volume 10 Issue 4 e01440-19 mbio.asm.org 19

 on F
ebruary 21, 2020 at U

niversity of M
innesota Libraries

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


Data availability. All data and scripts are available at GitHub at https://github.com/acgerstein/
UgClGenomics.
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