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Abstract 24	
  

There is increasing interest in the plant microbiome as it relates to both plant health and 25	
  

agricultural sustainability. One key unanswered question is whether we can select for a plant 26	
  

microbiome that is robust after colonization of target hosts. We used a successive passaging 27	
  

experiment to address this question by selecting upon the tomato phyllosphere microbiome. 28	
  

Beginning with a diverse microbial community generated from field-grown tomato plants, we 29	
  

inoculated replicate plants across five plant genotypes for four eight-week long passages, 30	
  

sequencing the microbial community at each passage. We observed consistent shifts in both 31	
  

the bacterial (16S amplicon sequencing) and fungal (ITS amplicon sequencing) communities 32	
  

across replicate lines over time, as well as a general loss of diversity over the course of the 33	
  

experiment suggesting that much of the naturally observed microbial community in the 34	
  

phyllosphere is likely transient or poorly adapted. We found that both host genotype and 35	
  

environment shape microbial composition, but the relative importance of genotype declines 36	
  

through time. Furthermore, using a community coalescence experiment, we found that the 37	
  

bacterial community from the end of the experiment was robust to invasion by the starting 38	
  

bacterial community. These results highlight that selecting for a stable microbiome that is 39	
  

well adapted to a particular host environment is indeed possible, emphasizing the great 40	
  

potential of this approach in agriculture and beyond. 41	
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Significance Statement 47	
  

There is great interest in selecting for host-associated microbiomes that confer 48	
  

particular functions to their host, and yet it remains unknown whether selection for a robust 49	
  

and stable microbiome is possible. Here, we use a microbiome passaging approach to measure 50	
  

the impact of host-mediated selection on the tomato phyllosphere (above ground) 51	
  

microbiome. We find robust community selection across replicate lines that is shaped by plant 52	
  

host genotype in early passages, but changes in a genotype-independent manner in later 53	
  

passages. Work such as ours is crucial to understanding the general principles governing 54	
  

microbiome assembly and adaptation, and is widely applicable to both sustainable agriculture 55	
  

and microbiome-related medicine.  56	
  

 57	
  

Introduction   58	
  

The study of microbiomes (diverse microbial communities and their collective 59	
  

genomes) spans both basic and applied research in human health, agriculture, and 60	
  

environmental change. As our understanding of the ability of the microbiome to influence 61	
  

host health and shape host traits deepens, there is increasing interest in selecting and/or 62	
  

designing microbiomes for specific traits or functions. Such trait-based selection of microbiomes 63	
  

has the potential to shape the future of agriculture and medicine [1][2]. In agriculture, below-64	
  

ground microbiota have already proven capable of shifting the flowering time of plant hosts [3], 65	
  

enhancing drought resistance [4, 5], and even altering above-ground herbivory [6]. However, 66	
  

long-term, repeatable success of future efforts will rely on a fundamental understanding of the 67	
  

assembly of, selection within, and co-evolution among microbiota within these communities. 68	
  

One of the challenges facing successful, rational microbiome manipulation and assembly is 69	
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disentangling the forces naturally shaping the communities, including both host characteristics 70	
  

and microbial immigration on community stability. For example, in both humans and plants, 71	
  

there is conflicting evidence as to the relative importance of the environment versus host 72	
  

genotype in shaping the microbiome [7–15], and dispersal has been shown to override host 73	
  

genetics in an experimental zebra fish system [16].  74	
  

One powerful but under-utilized approach to understand and experimentally control for 75	
  

the factors shaping microbiome composition and diversity is experimental evolution. Measuring 76	
  

changes of populations or communities over time under controlled settings in response to a 77	
  

known selection pressure has proved a powerful force in gaining fundamental understanding 78	
  

of both host-pathogen (co)evolution [17] and microbial evolution [18]. Here, we harness an 79	
  

experimental evolution approach in order to study how an entire microbial community can be 80	
  

selected upon in a plant host environment that varies across disease resistance-associated 81	
  

genotypes. We test the fundamental yet relatively untested assumption that a microbiome can 82	
  

be selected to adapt to its host in a robust fashion. To do this, we employ a microbiome 83	
  

passaging approach using the phyllosphere microbiome of tomato (Solanum) as a model system 84	
  

to select for a community that is capable of growth in this relatively oligotrophic environment 85	
  

and is resilient to perturbation via competition with a non-‘adapted,’ but more diverse 86	
  

community. The phyllosphere, defined as the aerial surfaces of the plant, is a globally important 87	
  

microbial habitat [19], and can shape important plant traits such as protection against foliar 88	
  

disease [20, 21] and growth [22, 23]. Successful trait-based selection on the phyllosphere could 89	
  

therefore allow for enhancement of plant health, but this critically depends on the ability to select 90	
  

for a well-adapted microbial community that is relatively stable against invasion, particularly in 91	
  

open environments in which dispersal from neighboring hosts or the surrounding environment is 92	
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inevitable.  93	
  

We collected a diverse phyllosphere microbiome from tomatoes grown in an agricultural 94	
  

setting and transplanted it onto green-house grown plants using a transplantation method 95	
  

previously shown to be effective for lettuce [24]. We serially passaged this diverse microbiome 96	
  

on each of four cohorts of tomato plants (six lines per cohort) of five different genotypes (pairs 97	
  

of near isogenic S. lycopersicum genotypes that differed at known disease resistance loci, as well 98	
  

as a wild tomato accession, S. pimpinellifolium) for a total of 30 weeks. On each plant, during 99	
  

each passage, community assembly and dynamics might be driven by neutral processes or reflect 100	
  

positive or negative selection of specific taxa by the plant, the greenhouse environment, and/or 101	
  

the other microbial taxa present. We therefore sought to characterize the relative importance of 102	
  

neutral versus deterministic processes both computationally using a neutral model, and 103	
  

empirically using community coalescence experiments [25] in which communities from different 104	
  

passaged lines are combined together and re-inoculated onto host plants in a common garden 105	
  

experiment. Overall, we were able to measure and characterize the response of the 106	
  

phyllosphere microbiome to selection in the plant host environment under greenhouse 107	
  

conditions, and our findings suggest selection for a stable and well-adapted plant-associated 108	
  

microbiome. 109	
  

 110	
  

Results 111	
  

Serial passaging experiment  112	
  

A diverse starting inoculum was collected from field grown, mature tomato plants. 113	
  

This field-microbiome was spray inoculated onto 30 tomato plants of 5 different genotypes, 114	
  

with six replicates each. Two-week old tomato plants were spray-inoculated once per week 115	
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for five weeks, and then sampled in their entirety ten days after the final inoculation (Figure 116	
  

1b). The phyllosphere microbiome of each plant was then individually passaged on these 117	
  

genetically distinct hosts over the course of four eight-week long passages; P1, P2, P3, and P4 118	
  

(Figure 1a; see methods for details). Microbiomes were not pooled across plants within a 119	
  

given plant genotype, resulting in 30 independent selection lines. Control plants were 120	
  

inoculated with an equal volume of either heat killed inoculum (P1) or sterile buffer 121	
  

(subsequent passages) every week. At the end of each passage, bacterial density was measured 122	
  

and normalized to the weight of each plant (Figure 1c), and communities were sequenced 123	
  

using 16S rRNA amplicon sequencing.  124	
  

 We first measured the impact of host genotype on bacterial community structure 125	
  

(Figure 1d). Using Bray-Curtis dissimilarity measures, we performed permutational 126	
  

multivariate analysis of variance tests using the Vegan’s Adonis function and found that plant 127	
  

genotype explains 29% of dissimilarity between microbiomes in P1 (p=0.003). In P2, plant 128	
  

genotype similarly explains 28% of the variation in bacterial community dissimilarity  129	
  

(p=0.004). However, genotype becomes an insignificant driver of community composition in 130	
  

both P3 (18%, p=0.378) and P4 (9%, p=0.937) and is robust to the removal of the outlying 131	
  

sample in P1 (see supplemental methods).  132	
  

 We also sought to determine if there were more subtle influences of host genotype on 133	
  

the community that were not uncovered through analyzing Bray-Curtis distances alone. From 134	
  

the original inoculum sample, we identified ten Operational Taxonomic Units (OTUs) using 135	
  

linear discriminant analysis effect-size (LEfSe) analysis [26] that were significantly 136	
  

associated with particular genotypes in P1 and P2. We compared their presence/absence at the 137	
  

end of P4 to those OTUs that were not found to be associated with genotype. Interestingly, 138	
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those OTUs that were significantly associated with particular genotypes at the start of the 139	
  

experiment were significantly more likely to be present at the end of the experiment than 140	
  

those not associated with genotype (Fisher’s exact test, p=0.013).  141	
  

 In addition to genotype effects, we were interested in what other factors were driving 142	
  

our observed change in community composition. We found that the number of passages on 143	
  

tomato plants strongly shaped microbial community diversity. Bray-Curtis distances across all 144	
  

samples uncovered a significant effect of both passage number and sample type (i.e. 145	
  

experimental, control, or inoculum) on bacterial communities (Figure 1e; effect of Passage F3, 146	
  

114= 27.8895, p= 0.001; Sample Type F3, 114= 3.0075, p=0.001). As this was an open system, 147	
  

we next sought to determine if there was a high degree of dispersal amongst plants within the 148	
  

greenhouse by directly comparing the communities of experimental and control plants. At 149	
  

every passage, control and experimental plants are found to host significantly different 150	
  

communities (all p-values <0.04), suggesting minimal effects of dispersal within the 151	
  

greenhouse relative to our inoculations. When inoculum and control samples are removed 152	
  

from analysis, there remains a significant effect of passage number (F3, 89= 33.3023p=0.001) 153	
  

and a significant overall effect of plant genotype on community composition (F4, 89= 1.9991, 154	
  

p=0.016). When variance is partitioned, passage can explain 51% of dissimilarity, whereas 155	
  

genotype explains only 4%. Replicate lines from accession 2934 were lost after P3 due to a 156	
  

stem rot fungal pathogen present in the original inoculum that seemingly only infected this 157	
  

genotype. However, the observed overall genotype effect was not driven by this accession, as 158	
  

there remains a significant effect of genotype after its removal (F3, 79= 1.9723, p= 0.034), and 159	
  

passage number remains highly significant (F3, 79= 31.9804, p= 0.001).  160	
  

 To better understand how the original, diverse, field inoculum changed over four 161	
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passages on plants in the greenhouse, we calculated the percentage of OTUs in the original 162	
  

inoculum that were detectable over the course of the experiment (Figure 1f, green diamonds). 163	
  

At the end of P1, 92% of the field inoculum OTUs were still present on the plants, but by P4, 164	
  

this was reduced to 29%. We then calculated if the decrease in original community member 165	
  

diversity was the result of replacement by non-inoculum taxa (i.e. those that colonized plants 166	
  

over the course of the experiment). In this case, we observed that the proportion of sequencing 167	
  

reads (divided by total reads) representing the original inoculum OTUs remains above 78% 168	
  

(Figure 1f, box plots). This suggests that a relatively small percentage of the community was 169	
  

made up of OTUs that colonized plants from the greenhouse environment. Of note, some 170	
  

OTUs considered “non-inoculum” were likely present in the initial inoculum, but in too low 171	
  

of abundance to detect. In particular, there were 27 OTUs with reads in the spray inoculum 172	
  

sample in the non-rarefied dataset, but this was number was reduced to zero after data 173	
  

rarefaction. To account for the impact of the small percentage of arriving species on 174	
  

community composition, we re-analyzed the dataset using only those OTUs that were 175	
  

observed to be present in the initial inoculum (Supplemental Figure S1a). In this case, passage 176	
  

number remains a significant driver of community dissimilarity (F3 89= 37.6813, p=0.001), as 177	
  

does genotype (F4, 89= 2.0393, p=0.015).  178	
  

 We next measured changes in community diversity over the course of passaging and 179	
  

across lines. We found a significant decrease in both OTU richness and alpha diversity over 180	
  

time across all plant genotypes (Figure 2a and b), including when only original spray 181	
  

inoculum OTUs are considered (Supplemental Figure S1b). Importantly, this drop in diversity 182	
  

from the start of the experiment does not correspond to a decrease in overall bacterial 183	
  

abundance on plants (Figure 1b). Note that our measures of bacterial growth likely largely 184	
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overestimate the starting densities and do not account for population turnover (as a result of 185	
  

cell death and replacement within a passage), and are therefore highly conservative. In P1, we 186	
  

also estimated fold change of bacterial abundance on control plants that were sprayed with 187	
  

heat-killed inoculum, and found an average change of 0.76, which is significantly lower than 188	
  

the averaged 11-fold change for experimental plants which received live inoculum (Welch’s 189	
  

Two sample T-Test, p<0.0001). Finally, although passaging was performed in a control 190	
  

temperature greenhouse, outside high and low temperatures and humidity all varied 191	
  

significantly across passages (Supplemental Figure 2; ANOVA P<0.001 for all measures), 192	
  

which may have impacted the observed differences in both abundance and growth across 193	
  

passages.  194	
  

 With the knowledge that communities were drastically changing over time, we sought 195	
  

to determine if the rate at which the communities were changing was consistent. To do this, 196	
  

we calculated Bray-Curtis distances of microbiomes in each passage to P1 microbiomes 197	
  

(Figure 2c). As we similarly observed through ordination plots in Figure 1, the communities 198	
  

become more dissimilar to P1 over time. We then fit both a linear and quadratic regression to 199	
  

these data, and we found a better fit of a quadratic model than linear as evidenced by higher 200	
  

R2 and lower AIC values (Linear R2 0.774, AIC -3563.231; Quadratic R2 0.8379, AIC: -201	
  

4414.637). Both models were highly significant (p<0.001). Taken together, this suggests that 202	
  

the rate of community change is slowing down, although it appears to have not entirely 203	
  

stopped.    204	
  

 We next observed changes in relative abundance of specific taxa within lines over time 205	
  

(Figure 2d, top 100 OTUs plotted). At each passage, there are numerous taxa that are 206	
  

differentially abundant compared to other passages. In some cases, there was evidence for 207	
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replacement of OTUs within taxonomic groups. Specifically, in the top 10 most differentially 208	
  

abundant taxa as determined by using a Kruskal-Wallis test [27] (Supplemental Figure S3), 209	
  

three of them are in the family Pseudomonadaceae. Two Pseudomonas OTUs (0010, 0004 ) 210	
  

are in significantly higher relative abundance in P1 than in P4 (p<0.0001), and gradually 211	
  

decreased in relative abundance an unclassified Pseudomonadaceae (0002) is significantly 212	
  

more abundant in P4 as compared to other passages (p<0.0001). All three OTUs are present in 213	
  

the initial spray inoculum, although OTU0002 represents only 0.03% of rarified spray 214	
  

inoculum reads whereas Pseudomonas OTU0004 represents 27% and Pseudomonas OTU0010 215	
  

represents 21%.   216	
  

 To better understand how bacterial community dynamics were changing over the 217	
  

course of the four passages, we utilized a recently developed cohesion metric to quantify 218	
  

connectivity of microbial community (Herren and McMahon 2017). In brief, community 219	
  

cohesion is a computational method used to predict within-microbiome dynamics by 220	
  

quantifying connectivity of microbial communities based on pairwise correlations and relative 221	
  

abundance of taxa. Changes in community cohesion over time are suggestive of biotic 222	
  

interactions, where connectivity can arise from either, or both, positive and negative 223	
  

interactions resulting from cross-feeding (positive) or competition (negative) as well as 224	
  

environmental co-filtering. When applied to our dataset (Supplemental Figure S4), we find a 225	
  

minor but significant increase in positive cohesion values (among 200 permutations) from P1 226	
  

to P4 (R2=0.19, p=1.4 x 10-38). Consistent with positive cohesion values showing increased 227	
  

biotic interactions, there are also increasingly negative cohesion values from P1 to P4, which 228	
  

again is minor but significant (R2=0.257, p=1 x 10-53). To test our hypothesis that community 229	
  

change was due to deterministic and non-neutral processes, we first applied the Sloan neutral 230	
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community model [28] and found that a neutral model is less correlated with observed 231	
  

communities on the plants over time (Supplemental Figure S5a). However, this model 232	
  

assumes equal dispersal amongst hosts, which was not the case for P2-P4, as microbiomes 233	
  

were passaged without pooling. Thus, we compared this finding to an approach that is more 234	
  

appropriate for our experimental design. We generated a null prediction based on the known 235	
  

community composition of inocula applied at each passage and comparing our observed 236	
  

communities to the predicted neutral community using a recently developed approached [29] 237	
  

(see methods for complete details). We found that Bray Curtis distances between predicted 238	
  

(null) and observed communities moderately increases over time (R2=0.261, p<0.0001) 239	
  

(Supplemental Figure S5b), suggesting that community change over the course of the 240	
  

passaging experiment is likely the result of deterministic rather than stochastic processes. 241	
  

Further evidence for a shift away from neutrality can be observed using occupancy- abundance 242	
  

curves in which the occupancy, or proportion of individuals in which an OTU is found, is plotted 243	
  

against its relative abundance. A positive correlation between the two is expected to occur by 244	
  

chance, as in a neutrally assembled community, but a change in distribution of individuals may 245	
  

indicate a community shaped by deterministic processes [30, 31]. When our data are visualized 246	
  

in this manner (Supplemental Figure S6), we see that in P1, the most abundant taxa also occupy 247	
  

the highest proportion of plants, as you would expect in a neutral community not undergoing 248	
  

niche selection. However, this trend collapses by P4 with many abundant taxa occupying far 249	
  

fewer individuals than would be expected under an assumption of neutrality.  250	
  

We next designed an experiment to which we could apply Sloan’s model of neutral 251	
  

theory (Supplemental S7a). All lines from the end of P4 were pooled together and re-252	
  

inoculated onto tomato plants, mimicking the inoculation procedure from the first passage. 253	
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Plants that received the P4-combined inoculum had significantly different bacterial 254	
  

community composition than the P4 plants themselves (48% of variation explained, P=0.001; 255	
  

Supplemental S7b). We did not observe an effect of genotype on the communities assembled 256	
  

from this combined inoculum (p=0.565). We also found that the majority of the variation 257	
  

between samples (76%, p=0.001) was driven by an exceptional situation of introduction of a 258	
  

greenhouse taxon (OTU0003) to the plants (Supplemental S7c). To test if neutral processes 259	
  

were driving community structure in this experiment, we again examined fit to a neutral 260	
  

model using the Sloan model approach. In this case, as with P1, the assumption of equal 261	
  

dispersal potential among plants is met. In 200 iterative predictions, the fit of the neutral 262	
  

model is significantly higher in P1 (R2=0.87 ± 0.01) than P4 Combined (R2=0.52 ± 0.05; 263	
  

Student’s t-test, p-value < 0.01), suggesting that neutral processes are dictating the 264	
  

community structure after the first passage, but not in the P4 Combined experiment 265	
  

(Supplemental S7d). When P1 and P4 Combined are compared directly, we see the 266	
  

occupancy-abundance relationship breakdown in P4 Combined (Supplemental S7e).  267	
  

 268	
  

Mycobiome  269	
  

For P1 and P4, we also used ITS amplicon sequencing to describe the fungal communities 270	
  

across lines, and observe patterns that are similar to the bacterial communities. We again 271	
  

found a significant effect of passage number on fungal communities (Figure 3a; Bray-Curtis 272	
  

distances for all samples, ADONIS, 43%, p=0.001). The significant effect of passage number 273	
  

remained after inoculum, control samples, and accession 2934 were removed (Figure 3b; 274	
  

47%, p=0.001). However, unlike in the bacterial community analysis, we found no significant 275	
  

differences in community composition between control and experimental plants at P1 276	
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(p=0.117), P4 (p=0.649) or in both passages combined (p=0.588). Additionally, we found no 277	
  

effect of host genotype at either passage (p=0.612, p=0.576) or overall (p=0.997). We also 278	
  

measured a significant decrease in both OTU richness (t-test, p=0.013) and Shannon’s 279	
  

diversity (p=0.0005) between P1 and P4 across all genotypes (Figure 3c). Finally, analysis of 280	
  

the 5 most common taxa overall identified a single OTU, identified as Rhodosporidiobolus 281	
  

nylandii, which was not detectable in the inoculum or P1 but dominated the fungal community 282	
  

in P4 (Figure 3d). 283	
  

 284	
  

Testing microbiome adaptation using community coalescence 285	
  

The similarity of changes in community structure both across replicates and genotypes over 286	
  

the course of the passaging experiment (Figures 1, 2, and 3) led us to predict that these 287	
  

microbiomes were becoming well adapted to the local plant conditions (by which we mean 288	
  

that the taxa present were positively selected for over time). To further determine if the 289	
  

community changes we observed from P1 to P4 were due to habitat selection rather than 290	
  

neutral processes, we employed a community coalescence competition experiment. In this 291	
  

experiment (Figure 4a), phyllosphere communities from the end of P1 (pooled across all lines) 292	
  

and the end of P4 (again, pooled across lines) were inoculated onto a new cohort of plants, 293	
  

either on their own or in an approximately 50:50 mixture of live cells (as determined using 294	
  

live/dead PMA treatment followed by ddPCR; see methods for complete details).  295	
  

To ensure that our method for the mixed inoculum was effective, we sequenced 296	
  

multiple replicates of the P1, P4, and Mix inocula and found that source of inoculum explains 297	
  

88% of dissimilarity amongst samples (ADONIS, p=0.002). To confirm that the Mix 298	
  

inoculum was significantly different than both P1 and P4 separately, we compared P1 and 299	
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Mix inocula directly and found that 75% of difference between samples can be explained by 300	
  

this variable (p=0.02). Similarly, when P4 and Mix are compared directly, 74% of variation in 301	
  

the community is explained (p=0.02). This consistent difference among the three inocula 302	
  

allowed us to compare the communities colonizing plants from each treatment.  303	
  

 We first measured final bacterial abundance and found that colonization was lower on 304	
  

these plants than in previous experiments, but does not significantly differ among treatments 305	
  

(p=0.419), apart from control plants, where bacterial colonization was greatly reduced (Figure 306	
  

4b). We then compared bacterial communities again using 16S amplicon sequencing and 307	
  

ordinated samples on a PCoA based on Bray-Curtis distances. Plants that received P1 308	
  

inoculum have distinctly different communities than those that received either P4 or the 309	
  

Mixed inoculum. Plants that received the Mixed inoculum clustered together with those 310	
  

receiving P4 and were relatively indistinguishable. Using ADONIS tests, we determined that 311	
  

inoculum source can explain 45% of Bray-Curtis dissimilarity amongst samples (Figure 4c; 312	
  

p=0.001), and there was no effect of plant genotype (p=0.743; although note that only three 313	
  

genotypes were used in this experiment). In a pairwise analysis between P1 and Mixed, 314	
  

inoculum source explains 31% of the community dissimilarity (p=0.001). In contrast, 315	
  

inoculum source does not explain any significant variation in dissimilarity amongst P4 and 316	
  

Mixed inoculum plants (p=0.103). Together, these results suggest that the plants receiving the 317	
  

50:50 mixed inoculum were indistinguishable in community composition from those receiving 318	
  

the pooled, P4 passaged microbiomes, and that these selected communities were not invadable 319	
  

by the microbial communities from the start of the experiment. Consistent with our results 320	
  

from the passaging experiment itself, alpha diversity was found to be highest in P1 plants 321	
  

compared to both P4 and Mixed plants (Figure 4d). Alpha diversity did not differ amongst 322	
  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/627794doi: bioRxiv preprint first posted online May. 5, 2019; 

http://dx.doi.org/10.1101/627794


	
  

	
  

communities colonizing plants from the P4 and Mixed inoculums, despite being different 323	
  

between the two inocula themselves. We also examined compositional makeup of the 324	
  

communities (Figure 4e), and consistent with P1 to P4 passaging results, we see differentially 325	
  

abundant taxa between groups (Supplemental Figure 8). Again, two Pseudomonas OTUs are 326	
  

more abundant in P1 plants as compared to P4 and Mix, in which there is an unclassified 327	
  

Pseudomonaceae that is higher in relative abundance.  328	
  

 329	
  

Discussion  330	
  

The impact of a microbiome on host health and fitness depends not only on which 331	
  

microbial organisms are present in the community, but also on how they interact with one 332	
  

another within the microbiome [32]. Unlocking the great potential of microbiome 333	
  

manipulation and pre/probiotic treatment in reshaping host health will therefore depend on our 334	
  

ability to understand and predict these interactions. We took a microbiome passaging 335	
  

approach, inspired by classic experimental evolution, to test how selection for growth in the 336	
  

tomato phyllosphere under greenhouse conditions would impact microbiome diversity and 337	
  

adaptation across genotypes that differ in disease resistance genes.  338	
  

Across independently selected lines passaged on five tomato genotypes, we observed a 339	
  

dramatic shift in community structure and composition, accompanied by a loss of alpha diversity 340	
  

(Figures 1 and 2). We also found that host genotype shapes community composition early in 341	
  

passaging (P1 and P2), explaining over 24% of variation amongst samples, but diminishes over 342	
  

time. The relative importance of host genotype and environment in shaping microbiome 343	
  

composition remains highly debated. Our results suggest that the relative importance of genotype 344	
  

versus other factors, such as the growth environment or strength of within-microbiome 345	
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interactions, changes over the course of passaging on a constant host background. We observed 346	
  

that even in the absence of a strong genotype effect, there remains a legacy of genotype effect, in 347	
  

that OTUs found to be significantly associated with particular genotypes early on are more likely 348	
  

to be present at the end of passaging than those that did not exhibit any host preference.    349	
  

In order to test if the phyllosphere microbiome undergoes habitat filtering, we chose to 350	
  

begin the experiment with a diverse inoculum. This starting community generated from field 351	
  

grown tomato plants likely contained microbes from other surrounding plant species, dust, soil, 352	
  

and other sources. In particular, neighboring plants have been shown to contribute to both the 353	
  

density and composition of local airborne microbes [33]. We found that although the total 354	
  

number of these field inoculum OTUs decreased over the course of the experiment, the taxa that 355	
  

remained consistently made up 78-95% of the community. This provides evidence that the 356	
  

original spray inoculum underwent strong niche selection over the course of the experiment. We 357	
  

also see evidence for niche selection through changing occupancy-abundance distributions. 358	
  

Gonzalez et al. found a similar breakdown of occupancy-abundance relations in animal 359	
  

communities using miniature moss microcosms [31]. The authors predict that this was due to 360	
  

dispersal limitation, as their experimental design created habitat fragmentation, and they did not 361	
  

observe this similar decline in correlation in communities that were connected by “habitat 362	
  

corridors”. In our experimental design, dispersal limitation is likely to have played a role in the 363	
  

changing community structure. In addition, the incidence of high-abundance, low-occupancy 364	
  

taxa in P4, or “clumping” [30], is further suggestive of niche selection.  365	
  

To test the alternative hypothesis that community changes were due to neutral processes 366	
  

such as bottle necking or random dispersal, we first fit our data to neutral and null models, 367	
  

finding a poorer fit over time. We then tested this experimentally by conducting a community 368	
  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/627794doi: bioRxiv preprint first posted online May. 5, 2019; 

http://dx.doi.org/10.1101/627794


	
  

	
  

coalescence experiment to measure fitness of passaged microbiomes as compared to those from 369	
  

the start of the experiment. The results of this experiment strongly support the idea that these 370	
  

phyllosphere microbiomes adapted to the plant host environment over the course of four 371	
  

passages (Figure 4). Independent of overall bacterial abundance, P4 microbiomes were able to 372	
  

dramatically outcompete the less-adapted P1 microbiomes. This community coalescence 373	
  

approach [25] allowed us to demonstrate non-neutral selection of a bacterial community that 374	
  

is independent of host genotype and resistant to invasion by a more diverse, non-selected 375	
  

community. We cannot differentiate the relative contribution of evolutionary versus 376	
  

ecological change to the communities, but we expect both to have occurred within the time 377	
  

scale of these experiments. This community coalescence approach was used by others in a 378	
  

study conducted on methanogenic bacterial communities [34]. The authors found that when 379	
  

multiple methanogenic communities were combined, a single dominant community emerged 380	
  

from the mix. This emergent dominant community resembled the single community with the 381	
  

highest methane production that went into the combination, suggesting that the most-fit 382	
  

community is capable of reassembly, even in the presence of other community members.  383	
  

 While adaptation to both the local host environment (tomato plants, host genotype) and 384	
  

the larger environment (the greenhouse) were likely driving the increasingly non-neutral 385	
  

selection over time, the strength of within microbiome biotic interactions likely also increased 386	
  

over the course of the experiment. We see evidence for this through both increasing positive and 387	
  

negative community cohesion values. We also uncovered a strong effect of a greenhouse-388	
  

acquired taxon on the community in one of the experiments (Figure S7). Though we are not able 389	
  

to determine what drove certain plants to be more colonized by this taxon than others, we did 390	
  

observe strong shifts in community composition associated with its relative abundance that may 391	
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be due to spatial organization of plants in the greenhouse and/or stochastic initial colonization 392	
  

events. In a greenhouse study conducted on Arabidopsis thaliana phyllosphere communities, the 393	
  

authors found that abundance of certain dominant taxa could be tied to spatial organization of the 394	
  

plants that was likely driven by early stochastic events [13].  395	
  

Although we focus primarily on the bacterial portion of the microbiome, the mycobiome 396	
  

changed over the course of passaging as well (Figure 3). Previous work in A. thaliana 397	
  

demonstrated that “hub” fungal taxa strongly influence both bacterial alpha and beta diversity 398	
  

[35]. Although it is possible that multi-kingdom interactions played a role in shaping community 399	
  

composition, our experimental methods, especially the process of sonicating epiphytic 400	
  

microbiota and freezing in between passages, likely biased passaging towards bacterial taxa and 401	
  

epiphytes. Similarly, pelleting of the community and removal of the supernatant at each passage 402	
  

would have selected against any free lytic bacteriophages. Previously, we found that the phage 403	
  

fraction of the microbiome is capable of altering both abundance and composition in the tomato 404	
  

phyllosphere [36]. Furthermore, our collection and inoculation method may have reduced 405	
  

selection for dispersal ability across the phyllosphere environment. By evenly spraying 406	
  

microbes onto leaves in a high humidity environment, we may have tipped the balance in 407	
  

favor of bacterial species that are better competitors within the microbiome. A dispersal-408	
  

competition tradeoff was recently demonstrated using functional traits of soil microbial 409	
  

communities along a marine-to-land gradient, where bacterial communities from more 410	
  

disturbed habitats were found to be dominated by cell chemosensory and motility behaviors 411	
  

whereas those from more stable environments were dominated by traits for competition and 412	
  

chemical defense [37]. Future work is required to disentangle both the selective impacts of the 413	
  

plant versus environment versus multi-kingdom interactions in shaping microbiome 414	
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adaptation, and the change in microbial function as a result of this response to selection. 415	
  

Given the naturally distinct spatial structure, ease of sampling, high culturability, and 416	
  

demonstrated role in plant health [22, 38], the phyllosphere microbiome is an ideal model for 417	
  

testing theories of niche selection and microbiome adaptation. Through spray inoculation, the 418	
  

environment can be evenly saturated with diverse inoculum, and it is possible to sample the 419	
  

successfully colonized community its entirety. Moreover, bacterial abundance and growth can be 420	
  

tracked using ddPCR, and communities can be described using next generation sequencing. We 421	
  

were able to use the phyllosphere model to not only select upon entire host-associated microbial 422	
  

communities, but to then experimentally test our hypotheses regarding microbiome adaption in 423	
  

subsequent experiments.  Using our approach, we also shed light on a notable challenge in 424	
  

microbiome research. Our data suggest that when describing the microbiome of an open 425	
  

environment, such as plant surfaces, many of the taxa found there may be transient visitors. In 426	
  

the case of the phyllosphere, there are microbes on leaf surfaces that may have emigrated from 427	
  

air, soil, surrounding plants, or other non-plant habitats and do not necessarily represent an 428	
  

adapted community that is capable of growth and persistence. Passaging of microbiomes in the 429	
  

absence of specific trait-based selection, as we have done here, seems to be a powerful way of 430	
  

differentiating those taxa that are, or can rapidly become, well adapted to the plant host 431	
  

environment. It also raises the question as to if a microbiome should be defined as the 432	
  

community that is found upon sampling and sequencing, or if a true microbiome is one that is 433	
  

adapted to its host or environment. 434	
  

Overall, we were able to show rapid and robust habitat selection of these communities 435	
  

over relatively short time scales. The results uncover great promise of this approach and system 436	
  

for answering fundamental questions about the forces shaping microbiome assembly over time, 437	
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and also pave the way for selecting stable, uninvadable host-associated microbiomes, which 438	
  

may inform rational microbiome manipulation and probiotic design. Experiments such as 439	
  

these are crucial if we are to understand general principles governing microbiome assembly 440	
  

and adaptation and use this knowledge for transformative applications in both medicine and 441	
  

agriculture.  442	
  

 443	
  

Materials/Methods (See supplement for complete methods)  444	
  

Tomato accessions  445	
  

Tomato accessions were obtained from the Tomato Genetics Resource Center. Five tomato 446	
  

genotypes were used: Solanum lycopersicum money maker disease susceptible (TGRC 2706); 447	
  

S. lycopersicum money maker disease resistant (TGRC 3472); S. lycopersicum Rio Grande 448	
  

disease susceptible control for TGRC 3342 (TGRC 3343); S. lycopersicum Rio Grande 449	
  

disease resistant (TGRC 3342); and S. pimpinellifolium wild ancestor (2934). All genotypes 450	
  

were used for passages one, two, three, and p4-combined. Genotype 2934 was not used in 451	
  

passage four, as that genotype succumbed to fungal disease in the third generation. The 452	
  

community coalescence competition experiment included genotypes 2706, 3472, and 2934.  453	
  

 454	
  

Tomato germination and growth 455	
  

Seeds were surface sterilized using TGRC recommendations then transferred onto 1% water agar 456	
  

plates and placed in the dark at 21°C until emergence of the hypocotyl. At that point, seedling 457	
  

plates were moved into a growth chamber and allowed to continue germination for 1 week. After 458	
  

approximately one week, seedlings were transferred planted in sunshine mix #1 soil in seedling 459	
  

trays. After approximately one more week of growth, seedlings were transplanted into 8” 460	
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diameter pots, making the plants approximately 2.5-3 weeks old at the first time of microbial 461	
  

inoculation. Age of inoculation varied slightly from experiment to experiment but was kept 462	
  

identical amongst genotypes within an experiment.  463	
  

 464	
  

Inoculation preparation, first passage  465	
  

Microbial inoculum for the first passage of the experiment was generated from field-grown 466	
  

tomato plants from the UC Davis Student Organic Farm collected in September and October 467	
  

of 2016. Above-ground plant material was collected from various genotypes of tomatoes 468	
  

across nine different sites spread through four fields. Other plant types, such as lettuce, 469	
  

eggplant, corn, and oak trees, surrounded the tomato fields. Sterile phosphate freezing buffer 470	
  

was added to the bags of leaves, and the entire bags were placed in a Branson M5800 471	
  

sonicating water bath. Material was sonicated for 10 minutes. This gentle sonication washes 472	
  

microbes from the surfaces of the leaves but does not damage cells.  The resulting leaf wash 473	
  

from each site was pooled and divided into 6 aliquots and stored in glycerol freezing buffer. 474	
  

For each inoculation in the first passage, an aliquot was thawed, cells pelleted, and re-475	
  

suspended in 200mL 10mM MgCl2 buffer.  Of this, 40mL were and heat killed in an autoclave 476	
  

for a 30 minutes at 121°C. Both live and heat-killed inoculum were plated. There was no 477	
  

growth from heat-killed inoculum, and live-inoculum concentration was calculated to be 1.1 478	
  

X 10 ^6 CFU/mL. Soil from each site, which had been stored at -20°C, was combined in a 479	
  

sterile bucket and thoroughly mixed before inoculation.  480	
  

 481	
  

Inoculation procedure  482	
  

Soil inoculation: The top layer of every pot was supplemented with 40 grams of UC Davis 483	
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Farm Soil. Soil inoculation was only performed once and only for the first passage of plants.  484	
  

Spray inoculation: Each plant was sprayed with 4.5mL of inocula using misting spray tops. 485	
  

Control plants from passage 1 were inoculated with the heat-killed inocula. Control plants 486	
  

from P2 onward were inoculated with sterile 10mM MgCl2. Immediately after inoculation, 487	
  

plants were placed in a random order in a high-humidity misting chamber for 24 hours. After 488	
  

24 hours, the plants were moved to a greenhouse bench. Plants were inoculated once per week 489	
  

in the same manner and were placed in the misting chamber for 24 hours after every 490	
  

inoculation.  491	
  

 492	
  

Plant sampling and inoculation preparation for P2-4 (Figures 1, 2, and 3) 493	
  

Ten days after the final spray inoculation, plants were sampled. With the exception for plant 494	
  

cohort 5, all plants were cut off at the base and immediately placed into sterile 1L bottles 495	
  

individually. By the end of cohort 5, the plants had grown too large to sample the entire plant, 496	
  

and instead, roughly 2/3 of the plant material was sampled from each plant, with care taken to 497	
  

sample the same age of branches from every plant. After collection, plant material was 498	
  

weighed, sterile buffer added, and the entire bottle sonicated as above. Half of the volume 499	
  

from each plant was pelleted and re-suspended in ~1mL of 1:1 KB Broth Glycerol and stored 500	
  

at -80°C for inoculation of the subsequent passage. The other half of the volume was pelleted 501	
  

and stored as a pellet at -20°C for DNA extractions. To prepare inoculation of the next 502	
  

passage, microbiome glycerol stocks were thawed, briefly pelleted to remove glycerol, and re-503	
  

suspended in sterile 10mM MgCl2.  504	
  

  505	
  

 506	
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Inoculation preparation, combination of P4 microbiomes (Figure S7) 507	
  

Frozen microbiomes from all plants from the end of passage four were thawed, and half the 508	
  

volume was removed from each aliquot. These aliquots were combined into one pooled meta-509	
  

inoculum. This was divided into six aliquots. One was used immediately, and the rest of the 510	
  

aliquots were stored at -20°C in KB Glycerol and thawed by aliquot for each week of 511	
  

inoculation, as above.  512	
  

 513	
  

P1, P4 coalescence experiment (Figure 4) 514	
  

Genotypes 2706, 3472, and 2934 were used for this experiment, and four plants of each 515	
  

genotype received each treatment (P1, P4, and Mix). One control plant of each genotype was 516	
  

spray inoculated with MgCl2 as a control.  To prepare the inoculum, microbiomes from the 517	
  

end of passage one and the end of passage four were combined. The same was done for all of 518	
  

the individual microbiomes that came off of passage 4 plants. In order to quantify only live 519	
  

cells, we used PMA treatment, using a method adapted from others [39], prior to ddPCR 520	
  

quantification (see below). Bacterial concentration was matched to 7.7 x 10^6 cells/mL. 521	
  

Plants were inoculated for three weeks and harvested 10 days after the final inoculation as 522	
  

described previously.  523	
  

 524	
  

Bacterial quantification using ddPCR 525	
  

The BioRad QX200 system was used for culture independent quantification of bacteria. 526	
  

Complete ddPCR methods are described elsewhere [36]. Bacterial abundance was measured 527	
  

directly after microbes were sonicated off plant surfaces into sterile buffer. For consistency, 528	
  

the same region of the 16S gene used below for amplicon sequencing was used for bacterial 529	
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quantification.  PNAs were used as well to limit any background amplification of plant 530	
  

mitochondrial or chloroplast DNA. All data were normalized to weight, in grams, and 531	
  

concentrations are reported as 16S copy number/gram. 532	
  

  533	
  

DNA extractions  534	
  

DNA was extracted from microbial pellets using the Qiagen PowerSoil DNA extraction kit. A 535	
  

buffer control extraction was included for every set of extractions in order to identify and 536	
  

exclude taxa present in the dataset due to buffer contamination.  537	
  

 538	
  

16S Libraries 539	
  

The 16S rRNA gene was amplified using dual-indexed primers designed for the V3- V4 region 540	
  

[40] using the following primers: 341F (5 -CCTACGGGNBGCASCAG-3) and 785R (5 -541	
  

GACTACNVGGGTATCTAATCC-3) [41]. Additionally, we also used peptide nucleic acids, 542	
  

PNAs [42] to decrease amplification of plant mitochondrial and chloroplast DNA. Negative 543	
  

buffer controls and PCR controls were sequenced along with experimental samples. Amplicons 544	
  

from each sample were pooled in equimolar concentrations, cleaned using an AMpure bead 545	
  

clean-up kit. Libraries were prepared for paired 300-nucleotide reads in Illumina’s MiSeq V3 546	
  

platform (Illumina) at The California Institute for Quantitative Biosciences (QB3) at UC 547	
  

Berkeley and run in 1 lane. 548	
  

 549	
  

ITS Libraries 550	
  

Using the same DNA as above, the ITS2 region was amplified using ITS9-F: 551	
  

GAACGCAGCRAAIIGYGA and ITS4-R: TCCTCCGCTTATTGATATGC following a 552	
  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/627794doi: bioRxiv preprint first posted online May. 5, 2019; 

http://dx.doi.org/10.1101/627794


	
  

	
  

protocol published online by the Joint Genome Institute. A second PCR was performed (7 553	
  

cycles) in order to anneal MiSeq illumunia adapters and barcodes onto the amplicons. PCRs 554	
  

were carried out in duplicate and pooled before they were prepared for sequencing by the QB3 555	
  

sequencing facility as described above.  556	
  

 557	
  

Data Processing and Analysis  558	
  

MiSeq sequencing files were demultiplexed by QB3 sequencing facility. Bacterial reads were 559	
  

combined into contigs using VSearch [43], and the remainder of the analysis was carried out in 560	
  

Mothur [44] following their MiSeq SOP [45] (See supplement for specifics). We used a 97% 561	
  

similarity cut-off for defining OTUs and the Silva reference database [46] for taxonomic 562	
  

assignment. Bacterial were rarified to 8,000 reads per sample. For the fungal community, an 563	
  

OTU table was generated from the fungal community sequencing data using QIIME 2 (version 564	
  

2018.8) (See supplement for specifics). Reads were clustered into OTUs at 97% identity and 565	
  

assigned taxonomy using the UNITE database and the feature-classifier plug-in [47]. Once 566	
  

bacterial and fungal OTU tables were generated in Mothur and QIIME, the remainder of the 567	
  

analysis was performed in R using the following packages: Phyloseq [48], vegan [49], ampvis2 568	
  

[50], and MicrobiomeSeq (Alfred Ssekagiri, William T. Sloan, Umer Zeeshan Ijaz).  569	
  

 570	
  

Community Cohesion Metrics 571	
  

The estimations of positive and negative cohesion values follows the cohesion metrics approach 572	
  

proposed by Herren et al. [51]. We modified their method to estimate cohesion values by using 573	
  

two relative abundance profiles of a training set and test set. Relative abundance profile of the 574	
  

training set was obtained by randomly selecting half of the samples in each microbiome passage. 575	
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The test set consists of the other half of the samples. Using the training set and following the 576	
  

same procedure as Herren et al., connectedness metrics were calculated. The estimated 577	
  

connectedness metrics subtracts a null model. The obtained connectedness metrics are multiplied 578	
  

by relative abundance profile of test set to estimate positive and negative cohesion values. Two 579	
  

hundred iterations of sampling randomization in each microbiome passage were carried out at 580	
  

OTU level to obtain training set and test set for P1, P2, P3, and P4.  581	
  

 582	
  

Neutral model 583	
  

The neutral model was proposed by Sloan et al. to describe both microbial diversity and taxa-584	
  

abundance distribution of a community [28]. Burns et al. [16] have developed a R package based 585	
  

on Sloan’s neutral model to determine the potential importance of neutral process to a 586	
  

community assembly. In brief, the neutral model creates a potential neutral community by a 587	
  

single free parameter describing the migration rate, m, based on two sets of abundance profiles – 588	
  

a local community and metacommunities. The local community describes the observed relative 589	
  

abundance of OTUs, while the metacommunity is estimated by the mean relative abundance 590	
  

across all local communities. The estimated migration rate is the probability of OTU dispersal 591	
  

from the metacommunity to replace a randomly lost individual in the local community. The 592	
  

migration rate can be interpreted as dispersal limitation. In each microbiome passage, half of the 593	
  

samples were randomly selected and the relative abundance profile at the OTU level was used. 594	
  

The neutral model fit and migration rate were estimated in the resolution results of 200 iterations 595	
  

for P1, P2, P3, P4, and P4 Combined.  596	
  

 597	
  

 598	
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Null model predictions  599	
  

We applied a null model approach on the serial passaging data P1-P4 to characterize the changes 600	
  

of stochastic process driving the assembly of plant microbiome over time. Lines that had high 601	
  

quality sequencing data at every time point (thirteen in total) were used for this analysis. The null 602	
  

scenario for each line at each passage was generated using the data for that same line at the 603	
  

previous passage. The null scenario of P1 was generated using the original field inoculum 604	
  

sample. The null model approach was based on community pairwise dissimilarity proposed by 605	
  

Chase and Myers [52] and extended by Stegen et al. to incorporate species abundance [53]. 606	
  

Chase and Myers proposed a degree of species turnover by a randomization procedure where 607	
  

species probabilistically occur at each local community until observed local richness is reached. 608	
  

However, the estimated degree of turnover does not include species abundance. To take full 609	
  

advantage of our dataset, we also incorporated species relative abundance into the procedure 610	
  

proposed by Stegen et al.  Zinger et al. has developed R code for the null model and applied the 611	
  

null model approach on the soil microbiome [29]. This approach does not require a priori 612	
  

knowledge of the local community condition and determines if each plant microbiome at the 613	
  

current passage deviates from a null scenario generated by that same microbiome at the previous 614	
  

passage. In brief, the null scenario of each was generated by random resampling of OTUs and 615	
  

remained the same richness and number of reads with the original sample. Total OTUs observed 616	
  

in the sample and the corresponding relative abundance were used as probabilities of selecting an 617	
  

OTU and its associated number of reads, respectively. The Bray-Curtis distance is used to 618	
  

calculate dissimilarities across null communities with 1,000 permutations. The average of 619	
  

dissimilarities among permutations represents null expectations of community dissimilarities. 620	
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The null deviation shows the differences between average null expectation and the observed 621	
  

microbiome of the same line.  622	
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Figure 1 Serial passaging of the phyllosphere microbiome  
Experimental design of serial passaging experiment where microbial inoculum from an agricultural tomato field was inoculated onto 
replicates of five genotypes and passaged for four passages (a). Plants were first inoculated when they were 2-weeks old, and the 
entire plant was sampled at 8 weeks old (b). Bacterial abundance was measured at the end of each passage from experimental and 
control plants using ddPCR and normalized to the weight of each plant. Inoculum density was calculated as well (c). PCoA plots of 
Bray-Curtis distances show a significant effect (determined by a PERMANOVA test) of genotype in P1 and P2 (d) and passage 
(colors) and sample type (shapes) (e). Ellipses indicate 95% confidence around the clustering. The percent of original inoculum OTUs 
present at each passage was calculated (green diamonds), and the reads/sample of inoculum OTUs out of total reads was calculated for 
each plant at every passage and displayed on a box plot (f). 
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Figure 2 Changes in diversity and 
composition from P1 to P4 
Plots of richness (a) and Shannon’s 
alpha diversity (b) at each passage 
show a significant decrease over 
time. Bray Curtis distances between 
microbiomes in P1 were compared to 
those in P1, P2, P3, and P4, and 
linear and quadratic models were fit 
to the data (c). A heat map showing 
relative abundance of the top 100 
OTUs illustrates the changing 
community composition at multiple 
taxonomic levels (d). Full taxonomy 
of OTUs is found in Supplemental 
Table 1. Significance values of 
pairwise comparisons in (a) and (b) 
are illustrated on the graph * p≤0.05; 
** p≤0.01; *** p≤0.001; 
****p≤0.0001.  
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Figure 3 The Mycobiome  
A PCoA plot of Bray-Curtis distances show a significant change in the community from P1 to 
P4, as determined by a PERMANOVA test (a). There is no effect of genotype (shapes) on the 
fungal community (b) Ellipses indicate 95% confidence around the clustering. Both richness 
(c) and Shannon’s alpha diversity (d) significantly decrease between P1 and P4. Relative 
abundance of the top five fungal taxa is plotted for the original inoculum, P1 and P4 (e). 
Significance values of pairwise comparisons in (c) and (d) are illustrated on the graph * 
p≤0.05; ** p≤0.01; *** p≤0.001; ****p≤0.0001. 
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Figure 4 Testing microbiome 
adaptation  
Plants were inoculated with pooled, 
passaged microbiomes from the end of 
P1, P4, or a 50:50 Mix of the two (a). 
Bacterial abundance was measured 
using ddPCR (b). A PCoA plot of 
Bray-Curtis distances colored by 
inoculum source shows that P1 plants 
have bacterial communities that are 
significantly different from P4 and 
Mix plants, which are 
indistinguishable (c). Shannon’s alpha 
diversity of the inoculum and 
experimental plants (d) show 
significant differences between 
samples. A bar graph illustrating 
composition of the top 10 OTUs 
shows differences in taxa amongst 
both the inoculum and experimental 
plants (e).  
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