Biomolecular NMR (MCB 5076)

The course covers NMR (nuclear magnetic resonance) theory, with a particular emphasis on the applications of the technique to determining protein structure and dynamics. Starting from the principles of NMR spectroscopy, we move to the two- and threedimensional NMR experiments used to assign resonances to specific atoms in proteins. Once NMR signals are assigned, interactions between spins and their environment provides the information needed for calculating NMR structures. Next, we focus on methods to obtain complementary information on protein dynamics. The last part of the course describes advanced applications of NMR such as studies of protein folding intermediates, amyloids, membrane proteins, and the use of NMR in drug discovery.

Credit hours: 2

Open to graduate students and undergrads (by permission)

Month	<u>Date</u>		Lecture					
Aug	31	1	Overview of Nuclear Magnetic Resonance					
Part I: NMR Basics								
Sept	7	2	Fundamentals of NMR (EM radiation, spin, coupling, NMR timescale)					
Sept	14	3	NMR experiments (semi-classical formalism, FID, FT, 1D)					
Sept	21***	4	Coupling: scalar, dipolar					
Sept	28	5	2D-NMR spectroscopy (Fourier transforms, COSY, NOESY)					
Part II: Multidimensional NMR experiments								
Oct	5***	6	Relaxation / measurements of protein dynamics					
Oct	12	7	Sample considerations & protein expression for NMR					
Oct	19***	8	Multidimensional NMR experiments & sequential assignments					
Part III:	Structu	re De	etermination					
Oct	26	9	Structure determination: Algorithms & protocols					
Nov	2	10	Structure validation: Refinement and measures of quality					
Part V: Advanced applications								
Nov	9***	11	Shift mapping, Drug screening, complex docking, SAR by NMR					
Nov	16	12	NMR of oligomers and large complexes & membrane proteins					
Nov	23	13	~~~ T'giving recess: No Classes Nov 19-25 ~~~					
Nov	30	14	Hydrogen exchange					
Dec	7***	14	Protein Folding					

NOTE : Dec 8 = Last day of classes

There will be a take home exam for the final (a report on an NMR paper from the scientific literature). The Final Exam will be handed out November 2 and is due on our last class meeting Dec 10 at the latest (no exceptions).

Grading:

Total

Quiz	zes		~	50 pts.
— .				

Take home final ~ 50 pts

= 100 pts*

*Class participation will be considered for borderline grades.

***<u>Quizzes:</u>

Quiz 2 - Coupling & 2D-NMR (Oct 5)

- Quiz 3 Relaxation and isotope labeling (Oct 19)
- Quiz 4 Structure determination (Nov 9)
- Quiz 5 Advanced applications (Dec 7)